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TURRET OPTIMIZATION USING PASSIVE FLOW CONTROL TO MINIMIZE AERO-OPTIC 

EFFECTS 

Abstract 

by 

Grady C. Crahan 

Over the past several decades, optical systems have begun to be deployed 

regularly on aircraft that fly at compressible flow speeds. During this time, these optical 

systems have also moved towards shorter operating wavelengths that can deliver a 

higher peak irradiance in the focused spot on a distant target, and the assumption is 

that future systems will use even shorter-wavelength lasers. 

As this trend towards short-wavelength systems continues, the need to take into 

account the effect of flow-induced, or “aero-optic,” aberrations that occur in the vicinity 

of the parent aircraft has become progressively more important. The conventional 

method for mounting an optical system is to place it in a hemispherical turret; however, 

from an aero-optic standpoint, there are two problems with this mounting 

arrangement. First, shocks begin to form on the surface of a sphere (or hemisphere) at a 

critical Mach number of only around 0.55.  Furthermore, a shear layer is produced due 



to flow separation on the aft side of the sphere; both of these flows, shocks and 

separated shear layers, involve strong index-of-refraction variations in the flow that 

would severely aberrate the outgoing beam. 

One approach to the problem would be to employ adaptive-optic (AO) methods 

in which the conjugate of the aberration is applied to the outgoing beam before it 

transmits through the aero-optic flow; however, state-of-the-art AO systems are 

generally unable to match the high temporal frequencies associated with aero-optic 

flows. As such, there is a need for innovative mounting strategies for optical systems 

that avoid or mitigate the formation of optically-aberrating flows in the first place. 

This dissertation outlines an investigation into aerodynamic shaping of turrets to 

mitigate the aero-optic aberrations produced by shock waves and shear layers. 

Specifically, a computational and experimental investigation into the “virtual duct” 

concept, which is a passive flow-control approach to mitigating aero-optic effects on 

spherical turrets, is described. The aerodynamic features associated with the problem 

are investigated, and the performance of different turret configurations as a function of 

the design parameters is explored. By the use of optimization techniques along with 

experimental validation, it is shown that significant increases of delaying flow 

separations up to an elevation angle of 162.4° while maintaining a critical Mach number 

over 0.7 can be attained on a hemispherical turret without a downstream fairing. The 

investigation shows that the virtual duct technique is an effective passive flow-control 

approach for dealing with aero-optic flows on spherical turrets in subsonic to transonic 

flows.

Grady C. Crahan 
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CHAPTER 1:   

INTRODUCTION 

1.1  Introductory Comments 

A significant amount of research is now being devoted to the problem of 

mounting optical systems on high-speed aircraft (De Lucca 2012, Gordeyev 2012). These 

systems could be used for a variety of applications such as optical communications 

(Gordeyev 2011, Smith 2013), imaging, or other uses (Duffner 1997, Forden 1997). 

  A review of the types of lasers that have been evaluated or could be employed 

in future aircraft-mounted optical systems is given by Carroll (2011).  Starting in the late 

1960s, investigators considered primarily the CO2 laser, which was the highest-power 

laser available at the time. A serious problem with the CO2 laser, however is that it has a 

relatively long wavelength in the far infrared, that is  = 10.6 m. In particular, the 

maximum irradiance at the focal point of a focused, unaberrated beam is limited by 

diffraction effects; for a beam projected from a circular aperture with diameter d, this 

peak irradiance is given by: 

   
   

     
   (1.1) 

where P is the laser output power and Y is the focal length of the optical system. 

Equation (1.1) shows that the on-target irradiance of the beam varies as the inverse of 
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the wavelength squared. This means that, for example, an optical system with the same 

power as a CO2 laser but with an output wavelength of 1 m would have over 100 times 

the peak irradiance on target. This result clearly shows the significant improvement in 

on-target irradiance that can be obtained by using systems with shorter wavelengths. 

Figure 1.1 shows how the peak, on-target diffraction-limited irradiance of an optical 

system varies with the system wavelength, nondimensionalized by the diffraction-

limited irradiance achievable at 10.6 m.  

The trend to shorter-wavelength lasers raises, however, other operational 

problems. In particular, the ability to focus on distant targets in the farfield is also 

degraded by any optical aberrations that exist in the beam path between the point 

where the laser is emitted and the target. As discussed in Siegenthaler (2008), one 

 

Figure 1.1. Maximum irradiance on target relative to the maximum 
irradiance of the CO2 laser plotted against the wavelength of the laser 

(Jumper 2001). 
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source of these intervening optical aberrations originates from atmospheric flows where 

the optical aberrations arise primarily from temperature variations in the atmosphere; 

however, these variations are typically associated with large-scale atmospheric 

structures and therefore have a comparatively low frequency that is correctable using 

adaptive-optic (AO) approaches (AO systems and the mechanisms by which optical 

aberrations are produced are discussed in further detail later in this chapter). On the 

other hand, optical aberrations can also originate from nearfield optically-aberrating 

flows that are produced by the aircraft on which the optical system is mounted. 

Examples of these kinds of nearfield aberrating flows include boundary layers (Buckner 

2005, Gordeyev 2003), shear layers (Duffin 2009, Fitzgerald 2004, Hugo 1997, Rennie 

2008), and even shock waves (De Lucca 2012, Rennie 2010). These nearfield 

compressible flows pose more of a problem to airborne optical-system designers due to 

the much higher-frequency and often larger-amplitude optical aberrations that they 

produce. The study of the aberrating effect of nearfield compressible flows is called 

“aero-optics,” and dealing with aero-optic flows is the primary concern of this 

investigation. 

If the magnitude and spatial variation of the intervening optical aberration is 

known, then the farfield irradiance pattern at the target can be computed (Klein 1970) 

using the Fraunhofer approximation:  

        
 

  
 
 

     
  
 
         

  
  
               

 

  

 

 

   (1.2) 
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Once the farfield irradiance pattern is known, a single-parameter representation of the 

effectiveness of the optical system, called the Strehl Ratio, SR, can be determined: 

       
  

  
   (1.3) 

where    is the time average of the light irradiance at the target point in the farfield for 

the aberrated system, and    is the optimum, diffraction-limited irradiance that could be 

attained on target for a system that had no aberrations, i.e. Equation (1.1). If the spatial 

probability distribution of the phase error is Gaussian at every instant, and if the 

aperture size is much larger than the scale of the aberrations, then the exponential form 

of the Maréchal approximation (Ross 2009) can be used to estimate the Strehl ratio: 

       
 

  
       

             

 
 

 

    (1.4) 

where OPDRMS is the root-mean square of the Optical Path Difference (OPD) for the laser 

beam, to be discussed in more detail below. It has been shown that the large aperture 

approximation generally under-estimates the time-averaged Strehl ratio, and thus 

should be used cautiously (Duffin 2009, Porter 2011a).  

Equation (1.4) shows that the effect that a given optical aberration has on the 

farfield performance of a beam increases as the wavelength of the laser decreases. For 

fast-moving aircraft like jet fighters or transports, this means that compressible flows in 

the immediate vicinity of the aircraft that would have a negligible effect on a 10.6 m 

wavelength beam could potentially impose a severe limit on the ability to effectively 

focus a beam with a wavelength of 1 m on a farfield target. In particular, the density 
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variations in the compressible flows surrounding the aircraft produce variations in the 

index of refraction according to the Gladstone-Dale relationship: 

                             (1.5) 

where n is the index-of-refraction, KGD is the Gladstone-Dale constant (0.225 cm3/g at 1 

μm (Gilbert 1993)), and ρ is the density field (Settles 2001). The magnitude of optical 

aberrations is expressed in terms of the Optical Path Length, OPL (Klein 1970), which is 

defined as the integral of the index of refraction over the path traversed by a light ray in 

the beam:  

                    
  

  

  (1.6) 

The relative difference in the OPL over the aperture is known as the Optical Path 

Difference (OPD) and is defined as: 

                                  (1.7) 

The OPDRMS (shown in Equation (1.4)) is then the root-mean-square of the OPD 

variations over the optical aperture.  

Figure 1.2 plots the dependence of the Strehl Ratio on the wavelength (Equation 

(1.4)) for a nominal aberration that would produce a Strehl Ratio of 0.95 for a CO2 laser 

with a wavelength of 10.6 m.  The figure shows that the same flowfield that has a 

negligible effect on a CO2 laser would yield a much smaller Strehl Ratio of 0.04 for a 

system with a shorter wavelength of 1 m.; as such, Figure 1.2 shows that all of the 

advantage gained by using a shorter wavelength as shown in Figure 1.1 can very easily 

be negated by aero-optic effects. Based on the strong effect that aero-optic aberrations 
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can have on the system performance, it is apparent that there is a need for research 

into methods for decreasing the aero-optic aberrations on the outgoing beam from an 

aircraft-mounted optical system. 

In summary, as investigators move towards shorter wavelength lasers, there 

becomes an inherent increase in the importance of designing the mounting system for 

the optical system in a manner that prevents or mitigates aero-optic distortions. In 

1980, a mounting geometry that produced a Strehl Ratio of 0.95 using a CO2 laser would 

be unacceptable for a system using a shorter wavelength today. Therefore, there now 

 

Figure 1.2. Strehl Ratio as a function of wavelength for a constant OPDRMS 
that would produce a Strehl ratio of 0.95 on a CO2 Laser. These same 
aberrations would produce a Strehl Ratio of 0.04 on a COIL (Jumper 

2001). 
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exists a critical need for design methodologies that will prevent or minimize nearfield 

aero-optic flowfields and/or their effects.  

1.2 Advantages and Disadvantages of Spherical Turrets  

 In many cases, optical systems that are mounted on an aircraft are mounted in 

spherical turrets. Perhaps the foremost advantage to using a spherical turret is that the 

spherical turret is rotationally symmetric, Figure 1.3. The rotational symmetry means 

that the simple spherical turret can be aimed in any direction without obscuring the 

outgoing beam by any attached structures or fairings. More importantly, the 

fundamental aerodynamic character of the turret does not change with aiming 

direction. As such, the turret is not susceptible to large changes in aerodynamic forces 

 

Figure 1.3. The beam direction defined by the elevation angle (α) and 
azimuthal angle (β) (Porter 2011a). 

 



 

8 

that may make it difficult to track the target, especially if the large changes in 

aerodynamic forces occur over small changes in aiming direction.   

A second reason for using a spherical turret is that it allows the laser beam to be 

pointed in any direction while maintaining a fixed orientation between the outgoing 

beam and the optical window of the turret. In particular, to maximize transmission of 

the outgoing beam, optical windows must typically be designed for the outgoing beam 

to pass through the window at only a single, specific angle. Even at the optimum 

transmission angle, a small amount of the beam would still be reflected from the 

window back into the turret. Figure 1.4 shows that the reflected laser energy would 

have to be absorbed by a beam dump and it is realistic to assume that this beam dump 

could only be designed for a single orientation of the beam with respect to the window 

due to space limitations within the turret. As such, a practical turret design must assume 

 

Figure 1.4. In order for the internal reflection of the beam to not destroy 
the internal optics, a beam dump needs to be placed inside the turret to 

absorb the reflection of the beam.  
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that the outgoing beam will have a fixed orientation with respect to the optical window, 

so that pointing the outgoing beam must be accomplished by rotating the turret rather 

than changing the orientation of the outgoing beam within the turret itself. The need to 

rotate the turret to aim the beam further supports the use of rotationally-symmetric 

shapes (i.e. cylindrical or spherical), at least in the region where the optical window is 

located, since these shapes can be rotated without altering the basic aerodynamics of 

the turret.  

1.2.1 Critical Mach Number Issues 

The above discussion has shown that there are several advantages to using a 

spherically-shaped turret configuration. Due to these advantages, the flow 

characteristics around the spherical turret have been extensively studied (Gordeyev 

2010, Morgan 2009, Tutkun 2007).  

On the other hand, spherical turrets are not ideal shapes for avoiding aero-optic 

flows. This is because, first, the high curvature of the spherical turret shape accelerates 

the flow around the sphere thereby producing high local flow speeds on the sphere. 

Specifically, the highest local flow speed on the surface of an object occurs at the 

location of minimum pressure; for a sphere, this location is at the top of the sphere 

where, in inviscid, incompressible flow, the minimum pressure coefficient, CP0, is -1.25 

(White 1994).  For a hemispherical turret on a cylindrical base with height D/3 (D is the 

hemisphere diameter), experimental measurements have shown that the minimum CP0 

is also approximately -1.25 (Gordeyev 2010). These minimum incompressible CP0 values 
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can be corrected for Mach-number effects using a correction such as the Karmen-Tsien 

compressibility correction (Karmen 1941, Tsien 1939):  

Equation (1.8) shows that the minimum CP0 on the spherical turret becomes increasingly 

more negative as the freestream Mach number,   , increases. In fact, when    

increases beyond a certain value, then the local flow at the location of minimum CP0 on 

the sphere becomes supersonic. This “critical” Mach number at which the flow first 

becomes supersonic can be estimated using (Anderson 2003)  

   
   

     
   

  
 

       
 
 
   
 

   
(1.8) 

 

Figure 1.5: Critical Mach number for a turret using the Karmen-Tsien 
compressibility correction formula. 
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11 

The intersection of this curve and the Karmen-Tsien compressibility correction formula, 

Figure 1.5, shows that supersonic flow first occurs on the sphere at a freestream Mach 

number of approximately 0.55.  This critical Mach number for the formation of 

supersonic flow has important implications on the aero-optic behavior of the turret 

because, downstream of the local supersonic flow region on the turret, the flow 

decelerates back to subsonic flow by passing through a shock wave, and strong aero-

optic effects can be produced by this shock wave because of the change in density 

across the shock; furthermore, this shock wave may also cause boundary-layer 

separation and formation of a downstream separated-flow region which also produces 

strong aero-optic effects (see below).  

 

Figure 1.6. OPDRMS for bands of modified elevation angles at transonic 
Mach numbers (De Lucca 2012). 
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 The Mcrit = 0.55 predicted by Equations (1.8) and (1.9) above has been validated 

by recent measurements performed on Notre Dame’s Airborne Aero-Optics Laboratory 

(AAOL). The AAOL is a flight-test program that is dedicated to the investigation of aero-

optic effects on airborne optical systems. As shown by De Lucca (2012), optical 

measurements on a spherical turret with a conformal window have shown evidence of 

supersonic flow and shock formation at a    of approximately 0.55. Specifically,  

detailed OPDRMS data acquired by De Lucca are shown in Figure 1.6 for different 

elevation angles using the same coordinate system as that shown in Figure 1.3. The 

main difference between the subsonic and transonic data is the formation of a weak 

shock wave on the top of the turret, i.e. when  is approximately 90o in Figure 1.6. The 

effect of the weak shock wave can be seen by the larger OPDRMS for the    = 0.65 data 

compared to the    = 0.4 – 0.5 data over the range 90° < α < 95°.  As such, the figure 

shows that the shock presents an optical aberration to an outgoing beam that would 

 

Figure 1.7. Experimental pressure distributions over a turret compared to 
the potential solution over a sphere (Gordeyev 2010).  
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become more serious as the    increases; furthermore, any unsteady motion of the 

shock would make it difficult to correct using an adaptive-optic (AO) approach.   

1.2.2 Flow Separation 

Spherical turrets are also not ideal from an aero-optic standpoint because they 

are susceptible to flow separation from their aft surface.  Pressure distributions 

measured for spherical turrets at different Reynolds numbers (Gordeyev 2010) are 

shown in Figure 1.7 and compared to the inviscid pressure distribution for a sphere. The 

figure shows that for high Reynolds numbers, the boundary-layer separation point 

occurs at approximately 120o from the direction of the oncoming flow. This measured 

location for the separation point agrees with the results of historical studies for a sphere 

with a turbulent boundary layer (Achenbach 1972) and more recent flow visualization 

 

 

Figure 1.8. Oil Flow Visualization of a turret showing the location of 
separation, ReD = 650,000. The line represents an elevation angle of 120°. 
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studies performed as part of this research (Figure 1.8).  On the other hand, if a shock 

forms on the turret, the shock wave could induce flow separation from the turret at a 

point upstream of 120o. Once the flow separates, a shear layer is formed that seriously 

degrades the beam, see below. A diagram depicting the separated flow behind a 

spherical turret is shown in Figure 1.9. 

1.2.2.1 Shear Layers 

The separated shear layer that forms behind a spherical turret presents a severe 

optical aberration to any optical system that attempts to look through the shear layer. 

The optical aberrations produced by a shear layer were investigated by Fitzgerald 

(2004), who showed that the aberrations are produced by vortical structures that 

convect downstream in the shear layer at a speed that is approximately the average of 

 

 

Figure 1.9. Schematic of subsonic flow around a turret (Gordeyev 2010). 
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the high-speed flow outside of the separation region and the low-speed flow in the 

recirculation region. The low pressure and reduced density at the center of the shear-

layer vortices result in index-of-refraction variations that impose optical aberrations on 

a transmitting beam of light. The magnitude of the optical aberration produced by the 

shear layer depends on several factors including the Mach number of the flow, and the 

downstream location in the shear layer (Hugo 1997).  

For a shear layer with high- and low-speed Mach numbers of 0.78 and 0.12, 

Rennie (2008) measured an OPDRMS of 0.26 m for a beam passing through the shear 

layer at approximately 400 mm downstream of the origin of the shear layer; these are 

fairly representative of the kinds of conditions that might exist for a turret-mounted 

optical system carried by a jet transport or fighter. At an operating system wavelength 

of 1 m, this OPDRMS gives a Strehl Ratio of 0.07, meaning that only 7% of the power in 

the outgoing beam would be on target compared to the optimum, diffraction-limited 

performance. A summary of the OPDRMS and Strehl Ratio for different shear layer 

experiments is shown in TABLE 1.  

  

TABLE 1  

SUMMARY OF EFFECT OF A COMPRESSIBLE M=0.78/0.12 SHEAR LAYER 

ON THE STREHL RATIO OF A 1 M SYSTEM. 

 Shear Layer 
(Duffin 2009) 

Shear Layer 
(Rennie 2008) 

OPDRMS (μm) 0.22 - 0.275 0.26 

Strehl Ratio 0.05 - 0.15 0.07 
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1.2.2.2 Adaptive-Optic Corrections 

A possible approach to mitigating the optical effect of an aberrating flow such as 

a shear layer is to employ an adaptive-optic (AO) system (Tyson 1991). AO systems are 

used to enhance the performance of optical systems by actively compensating for 

optical aberrations (Tyson 2000), and are typically used to improve image quality in 

optical and infrared astronomical telescopes, to aid in the imaging and tracking of 

rapidly-moving space objects, and to compensate for laser beam distortions 

(Roggemann 1996). Most AO systems are made of three different subsystems, as shown 

in Figure 1.10. The first subsystem is a wavefront sensor that measures the wavefront 

distortions of the optically-aberrating region of interest; these measurements can 

originate from, for example, glint from the target, or a light beacon that is intentionally 

created for this purpose (Rennie 2012). The second part of the AO system is a 

 

Figure 1.10. Basic components of an adaptive-optics system (Tyson 2000). 
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deformable mirror that can change its surface shape to place the conjugate of the 

measured wavefront distortions on an outgoing beam of light.  The third subsystem is a 

computer that analyses the distortions from the wavefront sensor and uses actuators to 

deform the mirror correctly (Tyson 2000). 

 Considered individually, these subsystems are generally fast enough to deal with 

the high frequencies that are present in typical aero-optic flows. However, as discussed 

in Nightingale (2005), the overall control loop used to drive these subsystems places 

significant bandwidth limitations on the conventional closed-loop AO system. 

Specifically, Nightingale (2005) shows that a closed-loop AO system must typically 

operate at least 100 times the frequency of the optical aberration that is being 

corrected; this bandwidth is typically not achievable by existing AO systems. 

A study by Duffin (2009) shows in greater detail the limitation of conventional 

AO systems to correct the high frequencies associated with aero-optic aberrations. In 

particular, every AO system has latency issues that originate from (1) the update 

frequency, fu (Hz), of the applied correction and (2) the time it takes for the AO 

computer to read the aberrated wavefront and apply it to the deformable mirror, 2(s). 

In order to compute the latency effects, a characteristic aero-optic disturbance 

frequency, fd (Hz), is also defined for the aberrating flow. Figure 1.11 plots the  

achievable AO correction (i.e. -10 * log10[OPD RMS,corrected / OPD RMS,uncorrected]) as a 

function of fu, fd, and 2. The solid line plots the required number of updates per cycle of 

the aero-optic disturbance, for a system that has no computer-related latency, i.e. 2 = 

0. On the other hand, Figure 1.11 shows that for non-zero values of the computer 
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latency, the performance of the AO system will asymptote to a maximum value shown 

by the horizontal lines on the right side of the figure.  

 As an example, consider the shear layer data shown in TABLE 1 where the OPD 

RMS,uncorrected = 0.26 μm ( = 1 μm) and fd = 3 kHz. Using Equation (1.4), the Strehl ratio is 

approximately 0.07. In order to increase the Strehl to 0.90, the OPDRMS,corrected must be  

reduced to 0.052 μm, giving a ratio of the corrected to uncorrected of 0.2, or 6.9 dB. 

Assuming no computer latency, 2 = 0, Figure 1.11 shows that there needs to be 10 

updates for each disturbance. Therefore, the update frequency must be 30 kHz for a 

perfect system with no latency. Assuming a typical controller gain of  = 0.1, the 

required sampling rate is estimated to be 1.9 MHz, which is much faster than the rates 

 

Figure 1.11. Adaptive-optic system requirement estimation of aero-optic 
effects (Duffin 2009). 
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that are achievable by even typical high-speed wavefront sensors (Cavalieri 2007). Note 

that system latencies (i.e. 2 > 0) would increase the required update rate still further. 

 The above example illustrates how current state-of-the-art AO systems are 

unable to match the high temporal frequencies associated with aero-optic flows such as 

the separated shear layer that forms at the rear of a spherical turret. As such, feed-

forward AO approaches are also under investigation (Rennie 2008) that employ flow-

control techniques to force and regularize the shear layer, thereby increasing the 

effective bandwidth of the AO system.  Specifically, when forced, the turbulent energy 

of the shear layer goes preferentially into the formation of large-amplitude vortical 

structures, with passing frequency dictated by the forcing actuator, rather than into 

broadband turbulent fluctuations (Rennie 2008). The resulting optical aberration is then 

highly periodic with a phase that is linked to the phase of the forcing actuator; so that 

most of the optical aberrations produced by the forced shear layer can be removed 

using a simple deformable-mirror (DM) shape that is correctly synchronized with the 

passing of the shear-layer vortical structures (Rennie 2008).  Investigations have also 

been performed into the use of low-order optical measurements, such as a Malley 

probe, to synchronize the DM motion with the phase of the shear layer (Nightingale 

2009). Despite these successes, the feedforward AO correction is still not an 

operationally-proven technique, and would introduce considerable additional 

complexity if implemented on an actual, deployed turret and optical system. In 

summary, although AO approaches show promise, there is still significant advantage if 
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the mounting system for airborne-mounted optical systems can be designed to avoid 

the formation of shock waves and separated-flow regions in the first place.  

1.3 Summary of Spherical Turret Performance 

The preceding sections have shown that there are considerable advantages to 

employing the canonical spherical-turret configuration as a mount for airborne optical 

systems. Specifically, the hemispherical turret provides a convenient and proven 

method to aim the outgoing beam in any direction, while satisfying the optical-window 

and beam-dump requirements of the system. On the other hand, aero-optic flows 

associated with spherical turrets can severely limit the effective field of regard of a 

turret-mounted system. These aberrating flows include shocks that form on the turret 

for   > 0.55, and the separated shear layer at the rear of the turret. 

As such, this introductory chapter shows that new turret designs are needed that 

retain the aiming and transmission advantages of the spherical turret, while eliminating 

or mitigating the strongly-aberrating aero-optic flows to which spherical turrets are 

susceptible. This problem is the focus of the investigation described in this dissertation. 

In the next chapter, an aerodynamic design for airborne optical turrets is presented that 

is specifically intended to prevent the formation of shock waves and shear layers around 

the optical aperture, thereby avoiding degradation of the beam due to aero-optic 

effects in the first place.  
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CHAPTER 2:   

A PASSIVE APPROACH TO THE MITIGATION OF AERO-OPTIC FLOWS  

2.1 Introduction 

The disadvantage of spherical turrets, as discussed in Chapter 1, is that they 

produce strongly-aberrating flows consisting of shock waves that form on the top of the 

turret, and shear layers that are associated with the separated-flow region aft of the 

turret. In this chapter, a novel design approach that minimizes these flow features is 

described.  

2.2 Underwing Pod 

A study was done by Rennie (2010) and continued by Crahan (2011) into the 

design of an optical mount that was designed to minimize aero-optic flows and that 

could be integrated into a pod that could be carried under the wing of a fighter aircraft. 

The constraints of this study were to mount the optical system inside a pod that was 

approximately the size of the 380 gallon external fuel tank carried by a legacy fighter 

aircraft, and that the nominal flight speed would match that of a fighter aircraft at cruise 

speed (   ≈ 0.8). An early decision that was made in the study was that that the optical 

aperture for the outgoing beam would be mounted in a spherically-shaped turret at the 
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nose of the pod, due to the numerous advantages of the spherical-turret geometry 

presented in Chapter 1.  

2.2.1 Fairing Work 

The first method investigated in Rennie (2010) to reduce aero-optic effects on 

the aircraft-mounted pod was to fair the spherical turret at the front of the pod into the 

downstream pod body. The objective of the fairing was to reduce the curvature of the 

turret at the nose of the pod (i.e. “streamline” the turret), thereby reducing the 

maximum local flow speed on the turret. In this case, the fairing not only reduces the 

maximum flow speed and hence critical Mach number of the turret, but the fairing also 

reduces pressure gradients on the body so that the chance of flow separation is also 

reduced. As such, a fairing deals with both of the disadvantages of the spherical turret 

 

Figure 2.1. Examples of pod or fairing shapes that increase the critical 
Mach number on the turret ball to    = 0.8 (Rennie 2010). 
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described in Chapter 1; that is, a low critical Mach number and a large aft pressure 

gradient that produces flow separation.    

One of the streamlining shapes for the forebody investigated in Rennie (2010) 

was the ellipse, given by: 

  
 

 
    

 

 
 
 

   (2.1) 

where r is the radial coordinate of the fairing forebody in a cylindrical coordinate 

system, and L is the length of the ellipsoid forebody long axis. Another fairing shape that 

was tested used a simple cubic to blend the turret ball at the front of the pod with the 

ogive-shaped downstream tail of the fairing; this pod shape was denoted “cubic 

forebody:” 

                (2.2) 

Ellipsoidal and cubic-forebody pod shapes that were found to meet the design 

objectives are shown in Figure 2.1. The shapes are bodies of revolution consisting of a 

 

Figure 2.2. CFD-computed pressure distributions for basic pod shapes 
shown in Figure 2.1 (Rennie 2010). 
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front turret ball and an ogive tail that are blended using the forebody shapes described 

by Equations (2.1) and (2.2).  

Pressure distributions for the fairing shapes were computed using a 

computational fluid dynamics (CFD) code called COBALT (Strang 1999). In order to more 

rapidly evaluate a larger number of possible fairing shapes, the CFD computations were 

performed using an inviscid-Euler routine. The boundary at the inlet and outlet was a 

farfield boundary, the center and bottom were symmetry planes, and the pod surface 

was a solid wall. The inviscid-Euler approach was justified since one of the objectives of 

the study was to prevent flow separations on the pod and therefore maintain a flow 

around the pod that is close to the inviscid-Euler approximation.  

 As shown in Figure 2.2, both the cubic- and ellipsoidal-forebody shapes shown in 

Figure 2.1 raise the minimum CP0 on the spherical turret from -1.25 (inviscid flow with 

 

Figure 2.3. Basic aero-optic pod layout based on the “cubic-forebody” 
shape, including a basic cutout to enable a greater range of lookback 

angles (Rennie 2010). 
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no fairing) up to -0.24. Using Equation (1.9) this minimum CP0 corresponds to a critical 

Mach number of 0.8, so that both fairings would prevent supersonic flow in the vicinity 

of the turret ball up to a freestream Mach number of 0.8. On the other hand, the cubic-

forebody shape is thinner, particularly around the front section of the pod, and 

therefore has some advantage over the ellipsoidal-forebody shape if space constraints 

are important. 

2.2.2 Virtual Duct Concept 

A problem with the fairings shown in Figure 2.1 is that they connect to the 

surface of the turret ball at a point that is only approximately 60o past the forward-

looking direction, so that the field of regard of an optical aperture on the turret ball 

would be significantly restricted by the downstream fairing.  One method of increasing 

the maximum lookback angle of the optical aperture is to remove a cutout in the pod 

body immediately downstream of the turret ball. This cutout would roll with the turret 

ball around the longitudinal axis of the pod in a rotatable section called a “roll shell.” 

 

Figure 2.4. Illustration showing how straight cutout walls constrain 
streamlines on the turret ball (Rennie 2010). 
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The isometric sketch shown in Figure 2.3 includes a cutout and roll shell, and shows how 

the turret ball would be rotated to aim the outgoing beam in different directions.   

 In Figure 2.3, the cutout that enables the aperture to rotate to aft pointing 

angles has simple, straight walls that are separated by the aperture diameter so that the 

edges of the aperture will not be obscured by the pod. CFD results show, however, that 

the critical Mach number for this “simple” cutout design is significantly lower than the 

   = 0.8 target. Part of the cause for this reduction in critical Mach number can be 

attributed to the fact that the cutout removes some of the streamlining effect of the 

downstream pod body in the vicinity of the optical aperture. The CFD investigations also 

showed that the reduction in critical Mach number can also be attributed to the straight 

walls of the cutout. In particular, as shown schematically in Figure 2.4, the flow normally 

follows “lines of longitude” along the surface of the turret ball; however, the straight 

 

Figure 2.5. Pod with improved cutout and fence (i.e., “virtual duct”) 
installed to control flow around aperture (Rennie 2010).  
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walls of the “basic” cutout shown in Figure 2.3 disrupt this flow pattern by constricting 

the streamlines over the top of the turret ball, resulting in increased flow speeds over 

the top of the ball and therefore contributing to the observed reduction in critical Mach 

number. The straight cutout walls also diffuse the flow on the back of the ball faster 

than if the flow followed lines of longitude on the ball surface; this higher diffusion 

increases the adverse pressure gradient on the back of the turret ball thereby increasing 

the risk of flow separation and associated aero-optic aberrations. 

Based on the preceding results, the innovation of Rennie (2010) was to recognize 

that the aero-optic performance of the pod could be significantly improved by carefully 

shaping the cutout to control the flow over the spherical turret at the nose of the pod. 

In particular, rather than use a simple, straight-walled cutout as shown in Figure 2.3, the 

cutout was instead shaped to diffuse the flow at the front of the turret ball, thereby 

reducing the maximum flow speed over the turret, and to contract at the back of the 

ball, thereby reducing the chance of flow separation by accelerating the flow over the 

back of the ball. Furthermore, the effectiveness of the cutout walls was enhanced by 

extending the walls into the flow with a “fence.” The inner surfaces of these fences, 

together with the spherical surface of the turret itself, forms what can be called a 

“virtual duct” (Rennie 2010), which could be shaped in such a way as to prevent aero-

optically aberrating flows. In effect, the walls of the virtual duct are shaped to 

counteract the normal curvature of the surface of the spherical turret itself, so that the 

flow near the optical aperture “feels” as if it is flowing through a duct with a more-

constant cross-sectional area.   An example of a pod with a virtual duct installed is 
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shown in Figure 2.5.  The wall coordinates of the virtual duct were determined using 

fifth-order polynomials for both the contracting and diffusing sections, discussed in 

more detail in Chapter 5; note that the use of fifth-order polynomials is often used for 

wind-tunnel contraction design (Saric 1998).  

Pressure distributions along the centerline of the cutout, computed using CFD 

for the unmodified pod, the pod with a simple straight-wall cutout, and a pod with 

improved cutout (i.e. a virtual duct), are shown in Figure 2.6. The figure shows that the 

critical Mach number for the pod with the improved cutout is even higher than for the 

unmodified pod shape (   = 0.86 versus    = 0.8). Further, the adverse pressure 

gradient on the back of the turret ball has also been reduced, which reduces the 

possibility for flow separation and associated aero-optic aberrations. As such, the virtual 

 

Figure 2.6. CFD-computed pressure distributions around the turret ball 
and critical Mach numbers for different cutout configurations. “Straight” 

and “improved” cutout configurations are designed for a maximum 
lookback angle of 20o (Rennie 2010). 
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duct approach effectively modifies the flow over the spherical turret ball to reduce the 

chance of producing aero-optically aberrating flows such as shocks and flow separation. 

The virtual-duct approach is also a “passive” flow control approach in the sense 

that it does not rely on actuators or suction/blowing. The technique is applicable to 

other turret designs, including canonical hemispherical turrets such as shown in Figure 

1.9.  

2.2.3 Experimental Validation of the Virtual Duct Approach 

An experimental investigation of the virtual duct concept is described in Crahan 

(2011). The wind tunnel tests were conducted in two different facilities at the University 

 

Figure 2.7. Picture of experimental model showing (top) the pressure taps 
along the centerline of the model and (bottom) how the model looks in 

the wind tunnel (Crahan 2011). 
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of Notre Dame. The first facility was a two foot by two foot subsonic wind tunnel that 

can reach speeds of    ≈ 0.1. The second wind tunnel was a closed-circuit wind tunnel 

with a three foot by three foot test section and a top speed of    ≈ 0.6 (but was only 

used at    = 0.1 for this experiment).  

A schematic of the experimental setup including a detail of the model used in the 

tests is shown in Figure 2.7. First of all, in CFD studies it was shown that modeling only 

the top half of the pod produced flow results around the turret and virtual duct that 

were very close to the results obtained when modeling the full pod. As such, in order to 

maximize the size of the model while keeping the model blockage within acceptable 

limits, only the top half of the pod was built and placed on a splitter plate in the tunnel, 

as shown in Figure 2.7.  

 

Figure 2.8. Side view of the centerline of the pod for lookback angles of 
20°, 40°, and 60° (Crahan 2011). 
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The front of the experimental model used to test the virtual duct concept was 

also made out of interchangeable parts. The interchangeable parts allowed for the 

testing of different pod configurations that allowed different maximum lookback angles, 

consisting of 20°, 40°, and 60°; Figure 2.8 shows the centerline profile of the turret ball 

and aft ramp located between the virtual-duct fences at the front of the pod, for these 

three lookback angles. The height of the virtual duct was also adjustable, with the fence 

height of the duct defined as the distance from the center of the turret ball (i.e. the 

floor level for the wind-tunnel model) to the top of the virtual-duct fences, as shown in 

the topmost drawing in Figure 2.7. The model was also instrumented with pressure taps 

along the centerline of the pod that were roughly 0.013 m (0.5 inches) apart. For each 

pressure measurement, the program took 2050 samples over 0.5 seconds and placed 

the average in a test file. It completed this 5 times for each pressure tap so that each 

location had 5 averaged measurements. The scanivalve completed this process for each 

 

Figure 2.9. Experimentally and computationally-determined pressure 
distributions for pod model with 20° lookback angle for a high (left) fence 

height and a regular (right) fence height (Crahan 2011). 
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pressure tap. Once the scanivalve measured all the taps, it was reset to measure the 

data a second time. The average of the 5 samples taken the 1st and 2nd time to 

scanivalve measured the tap are the values shown below. The details of how the 

pressure coefficient is calculated is shown in Appendix A. 

With the configuration shown in Figure 2.7, the spherical ball of the pod was D = 

0.15 meters (6 in) in diameter, and the virtual-duct fence had a height of hREG = 0.107 

meters (4.2 in) (hREG/D = 0.7) for the regular fence height and 0.137 meters (5.4 in) 

(hHI/D = 0.9) for the high fence height. At typical test speeds in the Notre Dame low-

speed wind tunnels, the Reynolds number based on the diameter of the turret ball was 

ReD = 3.4 x 105, which is near the transitional value of 3x105 or 4x105 for a sphere 

(Schlichting 1979). To further ensure turbulent flow a 1 mm diameter wire was placed 

near the front of the sphere to trip the boundary layer. 

 

 

Figure 2.10. Experimentally and computationally-determined pressure 
distributions for pod model with 40° lookback angle for a high (left) fence 

height and a regular (right) fence height (Crahan 2011). 
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Figures 2.9, 2.10, and 2.11 show the measured pressure distributions on the 

centerline of the spherical turret between the virtual-duct fences, for the three lookback 

configurations shown in Figure 2.8 respectively, and also for regular and high fence-

height configurations. All of the pressure data shown in the figures were corrected for 

wind-tunnel blockage effects using the method of Maskell (1963) (see Appendix A). Note 

that some of the experimental data sets in Figures 2.9 to 2.11 show an unusually low CP0 

value at a single point on the front of the turret ball; this unusual CP0 reading was caused 

by the influence of the wire that was attached to the front of the turret to trip the 

boundary layer in each of Figures 2.9 to 2.11, the solid line shows the Euler CFD solution 

and the dots show the experimental results measured in the two foot by two foot wind 

tunnel.  

There are several points that can be made from the experimental results shown 

in Figures 2.9 to 2.11.  First, the figures show that the virtual-duct approach significantly 

 

Figure 2.11. Experimentally and computationally-determined pressure 
distributions for pod model with 60° lookback angle and high (left) fence 

height and a regular (right) fence height (Crahan 2011). 
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reduces the maximum local flow speed on the turret ball. Taking the minimum CP0 from 

each configuration, the critical Mach number (calculated using Equation (1.8)) for all 

tested configurations is summarized in TABLE 2. As shown in the table, the design 

objective of delaying shock formation up to    = 0.8 was achieved for the 20° and 40° 

lookback-angle cases, and nearly for the 60° case with the high fence. Note that a 

sphere has a critical Mach number of 0.55.  

Finally, Figures 2.9 to 2.11 show that the Euler routine does a reasonably-good 

job of matching the experimentally-measured minimum pressure on the spherical 

turret. The reason why the Euler routine compares closely to the experiment must be 

due to the fact that the flow over the turret in this region is close to the inviscid case. 

This close comparison suggests that an Euler routine can be used to perform preliminary 

investigations and screening of how well new virtual-duct designs perform in terms of 

raising the critical Mach number.  

 

 
TABLE 2  

CRITICAL MACH NUMBER FOR DIFFERENT LOOKBACK ANGLES AT DIFFERENT FENCE 

HEIGHTS BASED ON EXPERIMENTAL DATA (CRAHAN 2011). 

Lookback Angle Critical Mach number for a 
Regular Fence Height 

Critical Mach number for a 
High Fence Height 

20° 0.83 0.91 

40° 0.79 0.85 

60° 0.75 0.79 
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On the other hand, there are several concerns with the data shown in Figures 2.9 

to 2.11. First of all, although there is a significant reduction in the pressure gradient on 

the rear of the spherical turret, it is not clear from the measured pressure distributions 

how much the boundary-layer separation point is being delayed by the virtual duct. For 

example, most of the experimental pressure distributions in Figures 2.9 to 2.11 show a 

sharp leveling off of the CP0 distribution starting at a location of x/D ~ 0.6 on the turret 

ball, corresponding to an elevation angle of approximately 100o with respect to the 

oncoming flow. This leveling off of the CP0 distribution is a common indication of 

boundary-layer separation since the pressure tends to remain constant within the 

separated-flow region downstream of the separation point. As such, the leveling off of 

the CP0 distribution at an elevation angle of 100o implies that the boundary layer may 

actually be separating upstream of the 120o separation point for the unmodified 

canonical hemispherical turret (see Figure 1.8).  

To further investigate the boundary-layer separation point, oil-flow visualization 

studies were performed around the turret region of the pod within the virtual-duct 

fences. The oil that was used is a mixture of Dow Corning 200 Fluid at different 

viscosities. The mixture was made of a 1:1 ratio of fluids at 500 and 10,000 centistokes 

(cSt) and 10 drops of Engine Transmission UV dye so that the fluid will fluoresce under 

an ultraviolet light. The mixture is designed to be viscous enough to not move due to 

gravity, but can still be moved by the motion of the flow. Due to the viscosity of the 

fluid, the tunnel was run for more than 5 minutes so that the fluid could reach a steady 

state location. All oil flow visualization pictures only show the steady state location of 
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the fluid. Figure 2.12 shows a typical photograph of the oil streaklines on the back of the 

turret ball and between the virtual-duct fences. The oil flow shows attached flow on the 

front of the turret ball, but show lines of accumulated oil that project from the corners 

of the virtual-duct fences diagonally across the surface of the turret, eventually meeting 

on the turret rear centerline. The lack of oil on the pod model downstream of these 

diagonal oil streaklines suggests that the flow is separated downstream of the lines, 

which agrees generally with the pressure distribution data in Figures 2.9 to 2.11; 

however, further investigation is required. 

As such, the oil-flow visualization results show that the flow within the virtual 

duct is more complicated than originally believed, and that more work is required to 

fully understand the flow. Unfortunately, due to its relatively inflexible design, the pod 

model shown in Figure 2.7 is not ideal for the investigation of the detailed flow structure 

 

Figure 2.12. Oil flow visualization for flow over the pod. 
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within the virtual duct, and hence no attempt was made to further investigate the 

results shown in Figure 2.12. In the next chapter, experimental tests are described that 

were performed to more fully investigate the detailed flow structure in the virtual duct. 

2.3 Concluding Remarks  

The experimental pressure data has shown that the virtual duct approach can be 

successfully used to significantly increase the critical Mach number of a spherical turret 

ball. Such an increase in the critical Mach number means that the pod could be flown at 

cruise speeds of transport and fighter aircraft without the formation of shock waves and 

their associated optical aberrations in the vicinity of the optical aperture. The pressure 

data also showed close agreement with inviscid-Euler CFD results over the front of the 

turret, indicating that Euler codes can be successfully used for preliminary investigation 

and screening of different virtual-duct configurations regarding the prediction of critical 

Mach number.   

The experimental pressure and oil-flow visualization data are significantly less 

clear, however, regarding the ability of the virtual duct to prevent flow separation on 

the rear of the spherical turret at the front of the pod. In particular, oil-flow visualization 

studies showed thick accumulations of oil that lie diagonally across the rear of the turret 

ball, that indicate flow separation, although further investigation is required.  

It should be noted, however, that the experiments were performed at relatively-

low Reynolds numbers so that, despite the presence of the boundary-layer trip wire, it is 

not entirely clear that the flow was fully tripped to turbulent on the turret ball. For 



 

38 

example, as shown by Schlicting (1979), a boundary layer trip can often fail to transition 

the boundary layer to turbulent if the Reynolds number is too low.  As such, in the next 

chapter, the results of experiments are presented that were performed at a higher 

Reynolds number to ensure that the boundary layer on the turret ball is turbulent. 

Furthermore, although the fairing was shown above to have positive effects on the 

critical Mach number, the fairing adds additional complications to the model and makes 

it difficult to reconfigure the model to experimentally investigate different 

configurations. Based on these problems, in the next chapter, we turn our attention to a 

canonical turret with a virtual duct that has a larger Reynolds number than the pod in 

order to better understand the detailed flow structure in the virtual duct. 
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CHAPTER 3:   

THE CANONICAL TURRET WITH VIRTUAL DUCT 

3.1  Introduction 

With the positive results from the underwing pod in regards to increasing the 

critical Mach number, a new model was made to better investigate the detailed flow in 

the virtual duct and the ability of the virtual-duct concept to delay separation. One 

problem with the underwing pod model was that the maximum Reynolds number that 

could be tested was relatively low, ReD = 3.4x105.  This relatively-low Reynolds number 

came about due to the fact that, since the pod fairing was fairly large, the spherical 

turret at the front of the pod had to be comparatively small so that wind-tunnel 

blockage effects would not be excessive. As such, to better investigate the ability of the 

 

Figure 3.1. Isometric picture of a canonical hemisphere-on-cylinder turret 
with a virtual duct. 
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virtual duct to delay separation on the turret at high Reynolds number, a canonical 

hemisphere-on-cylinder turret model was constructed, Figure 3.1, and without the large 

downstream fairing representing the pod body; with these modifications, the diameter 

of the turret model was twice that of the pod model.  

3.2  Experiments on Canonical Hemisphere-on-Cylinder Turret 

The new, canonical hemisphere-on-cylinder turret was made out of a .3048 

meter (12 in) diameter steel hemisphere that sits on a .3048 meter (12 in) diameter 

aluminum cylinder that is .102 meters (4 in) high. This turret configuration matches the 

turret designs tested in other investigations (Gordeyev 2010). The hemisphere was 

instrumented with pressure taps spaced at 10° increments, excluding the top of the 

hemisphere.  

 

Figure 3.2. Comparison of pressure distribution found experimentally for 
flow over a 12 inch diameter turret. 
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 The baseline flow over the canonical hemisphere-on-cylinder turret model was 

first measured with no virtual-duct fences attached.  The tests were performed in the 

University of Notre Dame’s two foot by two foot low speed windtunnel at a velocity of 

34.3 m/s (   ≈ 0.1) which gives a ReD of 6.8 x 105; this ReD is above the critical Reynolds 

number of 4.0 x 105 for a sphere (Schlicting 1979) but a boundary-layer trip was still 

attached to ensure that the boundary layer was turbulent. The model was placed in the 

middle of the test section so that the boundary layer on the wind tunnel floor would be 

large enough to produce the necklace vortex shown in Figure 1.9.  

 Figure 3.2 shows the pressure data for flow over the turret compared to the 

potential-flow solution for a sphere. The pressure data follows the potential-flow 

solution up to an elevation angle of around 120°, where turbulent flow separation 

 

 

Figure 3.3. Oil-flow visualization on the canonical hemisphere-on-
cylindrical-base turret model, ReD = 6.8 x 105. The superposed vertical line 

shows the location of an elevation angle of 120°. 
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occurs. The experimental pressure distribution shown in Figure 3.2 is consistent with the 

experimental pressure distributions acquired in other studies as shown, for example, in 

Figure 1.7 (Gordeyev 2010).  

Oil-flow visualization studies were also performed on the turret model. A 

photograph of the oil-flow pattern on the turret during a test at 34.3 m/s (ReD = 6.8 x 

105) is shown in Figure 3.3. Superposed on the photograph are vertical lines at 10° 

increments in elevation angle from the oncoming flow (angle  in Figure 1.3), and also a 

longer line at the location where the elevation angle is 120°. The flow visualization 

clearly shows boundary-layer separation at around the 120° location; this is indicated by 

the buildup of fluid at the 120° location due to the reduced skin friction close to the 

separation point, followed by a reduced amount of oil and/or accumulation of the oil 

just downstream of the separation line.  A few other flow structures can be seen in this 

figure. First, horn vortices can be seen in the separated region away from the centerline, 

shown by the increase in fluid in that region. Another feature of Figure 3.3 is that the 

separation line on the turret decreases as the flow gets closer to the cylindrical base; 

this effect can also be seen in the CFD data shown in Figure 3.4, where the separation 

line is clearly seen to move upstream as the flow gets closer to the cylinder. In summary, 

the flow visualization data in Figure 3.3 shows that the baseline turret model used in the 

investigation has all of the main flow features observed in other supercritical-flow 

investigations of the canonical hemisphere-on-cylindrical base turret (Gordeyev 2010). 
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3.3 Experimental Investigation of Virtual Duct on Hemisphere-on-Cylinder Turret 

 Once the baseline measurements were completed with the canonical turret 

shape, virtual-duct fences were constructed and attached. For these tests, the virtual 

duct was made out of flexible sheet metal that could be adjusted into different shapes. 

This was done by mounting a fixed vertical wall onto the turret model with horizontal 

mounting screws attached. The horizontal mounting screws could then be adjusted for 

different fence shapes and, after adjusting the screws, flexible sheet metal sections 

were attached to the mounting screws to form the walls of the virtual duct. This ability 

to adjust the fence shape enabled the rapid testing and evaluation of different fence 

shapes. On the other hand, the actual fence shape for any test may have had slight 

 

Figure 3.4. CP distribution for hemisphere-on-cylinder turret with top 
(upper) and side (lower) views. These computational results are for a 

diameter of .3048 m (12 in) and ReD of 23.0 x 105 (Ladd 2009). 
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irregularities and imperfections; however, the actual fence shape was measured after 

each test for future reference and CFD modeling.  

3.3.1  Virtual Duct with Low Curvature 

Oil-flow visualization studies, completed similar to the studies from Chapter 2, 

were first performed for a virtual duct with a radius of curvature of 0.204 meters and a 

maximum displacement of the center of the virtual duct fence of 0.16 meters.   From 

the discussion of the virtual duct in the previous chapter, it is apparent that the 

curvature of the virtual duct has a strong effect on the performance of the virtual duct 

since it determines the amount of diffusion in the upstream part of the virtual duct and 

the amount of contraction in the downstream part. The oil-flow data for a low-curvature 

configuration is shown in Figure 3.5. 

Looking at the flow visualization it is apparent that the virtual duct significantly 

delays the separation point, as shown in Figure 3.5, where a line is drawn at each 10° 

interval in elevation along the turret centerline, showing that the virtual-duct delays 

separation up to an elevation angle of about 150° for this configuration.   

In addition to flow visualization, a pressure distribution was measured for the 

low-curvature case, shown in Figure 3.6, and compared to that of the turret without a 

virtual duct. The pressure distribution matches the “No Fence” case up until an 

elevation angle of 40°, where the fence begins to have an effect. The minimum pressure 

for the low-curvature case is higher than the no-fence case, such that the critical Mach 

number is increased from 0.55 to 0.57. This is a slight change in critical Mach number; 



 

45 

however, note that a downstream fairing, similar to the one studied in Chapter 2, could 

also be added to increase the critical Mach number still further. Also, note that the 

virtual duct shape chosen was not optimized and that the pressure distribution indicates 

that the diffusing part of the virtual duct for this fence design has very little effect and 

could have been better designed. The diffusing part of virtual duct has a strong effect on 

the maximum flow speed, and hence critical Mach number. Optimization of the virtual 

duct shape will be looked at in more detail in Chapter 5. 

Despite the lack of optimization of the diffusing part of the virtual duct, Figure 

3.6 shows that the virtual duct still has a significant, beneficial effect on the aft pressure 

distribution on the turret. Specifically, the smaller adverse pressure gradient between 

 

Figure 3.5. Flow through low-curvature virtual duct showing attachment 
up to an elevation angle of 150°. 
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90° to 150° shows that the virtual duct successfully decreases the adverse pressure 

gradient on the rear of the turret. The result is that the low-curvature virtual duct delays 

boundary-layer separation to an elevation angle of around 150°; the pressure 

distribution supports this by showing a constant pressure region downstream of 150°, 

indicating a separation in this region. Overall, the delayed boundary-layer separation for 

the low-curvature virtual duct would significantly improve the aft field of regard of the 

turret. The same data in Figure 3.6 is shown in Appendix A displaying the 95% 

confidence intervals. 

 
Figure 3.6. Pressure distribution for flow through the low-curvature 
virtual duct configuration shown in Figure 3.5, compared to a turret 

without a fence. 

 



 

47 

3.3.2 Virtual Ducts with Medium and High Curvature 

Investigations were also performed on virtual ducts with higher-curvatures:  a 

“medium-curvature” virtual duct with a 0.138 meter radius of curvature and a maximum 

displacement of the center of the virtual duct fence of 0.17 meters, and a “high-

curvature” virtual duct with a 0.099 meter radius of curvature and a maximum 

displacement of the center of the virtual duct fence of 0.19 meters. These 

configurations were identical to the low-curvature duct except for the amount of 

curvature of the center region of the virtual duct. The oil-flow data for a medium-

curvature configuration is shown in Figure 3.7 and a high-curvature configuration is 

shown in Figure 3.8. The oil-flow data for the medium- and high-curvature ducts show 

that these ducts also delay boundary-layer separation on the turret surface. However, 

the figures also show that the oil-flow data for the medium- and high-curvature ducts 

are increasingly dominated by an oil-free zone next to the walls of the virtual duct. 

Initially, it was hypothesized that this oil-free region was associated with the formation 

of necklace vortices at the leading-edge of the virtual-duct fences. Necklace vortices are 

produced by the interaction of a boundary layer with a perpendicular obstruction; for 

example, it is well known from hemisphere-on-cylindrical turret studies (Gordeyev 

2010) that necklace vortices form at the interface between the cylinder and turret 

ground plane, see Figure 1.9. Evidence of the presence of necklace vortices is shown by 

the oil-free zones at the leading edges of the virtual-duct fences (circled in Figure 3.8).  
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Figure 3.7. Medium-curvature virtual duct configuration. 

 

 

Figure 3.8. High-curvature virtual duct configuration. 
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In an attempt to eliminate or reduce the necklace vortices, putty was placed at 

the interface between the virtual-duct leading edges and the surface of the 

hemispherical turret, in order to more smoothly guide the flow into the virtual duct (the 

dark regions at the front of the virtual-duct fences in Figure 3.5 and Figure 3.7 are the 

putty that was placed in these regions). Despite the addition of the putty, Figure 3.5 and 

Figure 3.7 still show large regions that are clear of oil next to the inner surfaces of the 

virtual duct. As will be shown later, these clear regions are actually caused by secondary 

vortices that are produced by the curvature of the duct. Since these vortices have such a 

noticeable effect on the flow within the virtual duct as the duct curvature increases, the 

following chapter is devoted to detailed investigation of the cause, strength and effect 

of these vortices.   

 
Figure 3.9. Pressure distribution for flow through the medium-curvature 

virtual duct configuration shown in Figure 3.7, compared to a turret 
without a fence. 
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In addition to the flow-visualization data, a pressure distribution was also 

measured for the medium-curvature virtual duct, Figure 3.9. This figure also shows that 

the medium-curvature virtual duct increases the critical Mach number and delays 

boundary-layer separation on the turret, similar to the low-curvature virtual duct. For 

this case, the critical Mach number is raised to 0.66; however, as noted earlier, it is 

expected that the critical Mach number could be further increased by adding a 

downstream fairing, similar to the one studied in Chapter 2, and by optimizing the shape 

of the virtual duct. 

 

 

Figure 3.10. Picture of tufts attached to turret from the top (left) and a 
close up side view of the last row of tufts (right), flow is from left to right. 
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3.4 Tuft Study 

 As shown in Figure 3.10, tufts were also attached to the surface of the turret to 

visualize the flow through the virtual duct. The tufts consisted of roughly 0.013 m (0.5 

inch) pieces of yarn taped to the surface of the hemisphere with tape. This was 

performed for the medium-curvature virtual duct configuration only. The tufts were 

illuminated using a black light, and the exposure time of the camera was selected to 

show the fluctuations of the tufts. A slightly blurry image means the tuft is moving back 

and forth, indicating large fluctuations in the flow, while a less blurry tuft image means 

the flow has fewer fluctuations. The first row of tufts does not move and appear 

stationary, indicating that the flow has small fluctuations at this location. Further 

downstream, the tufts nearest the fence (top and bottom tufts in Figure 3.10 (left)) 

appear to fluctuate while the inner tufts continue to stay stationary, showing the effect 

of the streamwise vortices that occur in the corner regions between the spherical turret 

surface and virtual-duct fences; the fact that the centerline tufts at this location are 

stationary shows that the flow on the centerline is not directly influenced by these 

secondary structures.  From the top view, the furthest downstream row of tufts appear 

blurry, but a side view of these tufts, Figure 3.10 (right), shows that this is a side-to-side 

fluctuation, and not due to the flow separating in this region. Therefore the flow 

structures near the fence seem to continue through the outlet of the fence, but stay 

attached to the surface of the turret. The last row of tufts begins at an elevation angle of 

150° and continues for roughly another 10°. These tufts show flow attachment through 
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the outlet of the fence up to an elevation angle of 150°, a significant improvement on 

the elevation angle of 120° for the flow without a virtual duct attached. 

3.5 CFD Computations of Virtual Duct on Hemisphere-on-Cylinder Turret 

The ability to model the effect of the virtual duct using computational fluid 

dynamics (CFD) was also tested; as will be shown in the following chapters, CFD was 

used to further investigate the design space and in optimization studies. All CFD 

calculations shown in this section were completed using a detached-eddy simulation 

(DES) algorithm to correctly capture the flowfield inside of the virtual duct; more 

discussion of the CFD approach is presented in the next chapter. The CFD was 

 

Figure 3.11. Comparison of DES CFD (solid line) and experimental 
(diamonds) pressure distribution for flow over a hemisphere-on-cylinder 

turret. 
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completed using FLUENT at a flowspeed of 34.3 m/s (ReD = 6.8 x 105). The CFD 

computations were time resolved, and were run for 2 flow clearing times, that is, for a 

total time that allowed for the air to flow through the full domain 2 times. The domain 

consisted of an inlet region that is 5 ball diameters long and an outlet region that is 10 

ball diameters long. The inlet and outlet were defined as pressure farfield and the 

bottom wall and model is set as a no-slip wall.  

3.5.1 Hemisphere-on-Cylinder Turret 

This first CFD run was completed for a hemisphere-on-cylinder turret only. In 

order to correctly capture the flow over the turret, the necklace vortex that forms 

between the cylinder and the incoming plane needs to be modeled correctly, therefore 

 

Figure 3.12. Magnitude of skin friction for for flow over a hemisphere-on-
cylinder turret computed using the DES solver showing flow separation 

around an elevation angle of 120°. 
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there needs to be an inlet region that allows for the boundary layer to grow enough to 

produce the necklace vortex. To validate the experiment, a comparison of the centerline 

pressure distribution is compared to the experimental pressure distribution, shown in 

Figure 3.11. The pressure distribution matches the minimum CP0 of -1.25 and also shows 

separation around an elevation angle of 120°. This comparison is similar to the pressure 

distributions for flow over a turret as shown earlier in Figure 1.7. 

In order to compare the location of flow separation, a look at the skin friction on 

the surface of the sphere is a good indication of when separation occurs. Figure 3.12 

shows the magnitude of the skin friction as a function of elevation angle showing flow 

separation occurring at around 120°, which is similar to the oil-flow visualization shown 

in Figure 3.3. The combination of the CP0 and skin friction distributions over a turret 

show that the CFD can capture the flow features for flow over a Hemisphere-on-

Cylinder Turret. 

3.5.2 CFD Study of Low-Curvature Virtual Duct 

To evaluate the ability to model the virtual duct using CFD, a CFD study was 

completed for the same low-curvature virtual-duct configuration that was investigated 

experimentally and shown in Figure 3.5. Since the experimental fence shape was 

produced by moving screws in and out of the mounting plate on the turret, the fence 

shapes of the low-curvature virtual duct may have slight irregularities that are not 

modeled correctly in the CFD. To determine the fence shape for the CFD modeling, the 
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experimental fence shape was traced onto a piece of paper that was placed over the top 

of the fences.  

Figure 3.13 shows a comparison of the low-curvature pressure distribution found 

experimentally and computationally. The CFD-computed pressure distribution shows 

good agreement with experiment and appears to show attached flow up to the same 

elevation angle as the experiment, approximately 150°.  The main discrepancy between 

the two pressure distributions in Figure 3.13 is that the CFD predicts a higher Cp than the 

experiment between an elevation angle of approximately 100° and 130°. One possible 

explanation for this discrepancy is that the CFD may not accurately reproduce viscous 

effects that may introduce additional blockage and hence speed up the flow in this 

region of the virtual duct. Nonetheless, despite this discrepancy, the CFD still accurately 

 

Figure 3.13. Experimental pressure distribution (circles) compared to a 
DES of the same geometry (dotted line) for the low-curvature fence. 
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predicts the separation location. The CFD shows attached flow up to an elevation angle 

of 148°, based on the skin friction shown in Figure 3.14, which is similar to the 150° 

shown in the wind tunnel test, Figure 3.5. Overall, Figures 3.13 and 3.14 indicate that 

the flow can be reasonably-well modeled using a DES solver, especially in regards to 

determining the minimum pressure and the separation location.  

3.6 Concluding Remarks 

In the previous chapter, the ability of the virtual duct to increase the critical 

Mach number of a spherical turret was demonstrated; however, the ability to delay 

boundary-layer separation was less clear due to the low Reynolds number of the pod-

model tests, and because of the influence of the downstream fairing. An objective of 

this chapter was therefore to more-rigorously test the ability of the virtual duct to delay 

boundary-layer separation on the surface of a spherical turret. As verified by the 

pressure-distribution and flow-visualization results for the baseline turret, the 

hemisphere-on-cylindrical-base turret tests shown in this chapter were performed at a 

sufficiently-high Reynolds numbers to attain turbulent boundary-layer flow on the 

surface of the turret model. As such, the results of this chapter give a good indication of 

how the virtual duct would influence the turret boundary layer at the high Reynolds 

numbers that would exist on an actual system.  
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Virtual ducts with low, medium, and high curvatures were tested in this chapter 

and show that the virtual duct can delay separation on the turret to at least an elevation 

angle of 150°. However, for all configurations, the turret surface near the walls of the 

virtual duct was observed to be clear of oil, such that these clear regions effectively 

dominated the oil-flow visualizations for the medium- and high-curvature virtual duct 

cases.  As will be shown in the next chapter, these clear regions are produced by a 

streamwise vortex that forms in the corner between the virtual duct walls and the 

surface of the turret. The next chapter describes an investigation into these streamwise 

vortices and the development of a methodology to predict their strength and optical 

effect. 

 

Figure 3.14. Skin friction on the surface of the low-curvature virtual duct 
found using CFD. 
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CHAPTER 4:   

SECONDARY FLOW EFFECTS IN THE VIRTUAL DUCT 

4.1 Introduction 

As shown by the surface near the walls of the virtual duct being clear of oil in the 

flow visualization data, Figures 3.5, 3.7 and 3.8, there is a secondary flow effect 

occurring in this region. This chapter presents an investigation into the cause of this flow 

feature. Furthermore, a model for the flow in the corner regions of the virtual duct is 

developed, as well as an estimation for its aero-optic effect. 

 

Figure 4.1. Photograph of wind-tunnel model used in PIV tests. Flow is 
from left to right. 
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4.2 Particle Image Velocimetry (PIV) Study  

A Particle Image Velocimetry (PIV) study was performed to investigate the 

nature of the flow in the corners of the virtual duct. For this study, a model of one fence 

of a virtual duct was constructed that was 0.229 meters long (9 inches) and 0.127 

meters high (5 inches). This fence was mounted on a flat ground plane next to the 

window in one of the 2 foot x 2 foot low-speed wind tunnels at the University of Notre 

Dame, see Figure 4.1.  With this mounting arrangement, the window of the wind tunnel 

behaved as a reflection plane for the flow, thereby allowing a much larger model to be 

used, and it also facilitated detailed PIV measurements of the flow in the corner of the 

model fence. As shown in Figure 4.2, the PIV laser sheet was generated more or less 

perpendicularly to the flow direction near the exit of the virtual-duct model, and the 

camera was pointed through the window at close to 90o to the laser sheet; the exact 

angle between the laser sheet and the camera direction was measured and used to 

correct the PIV velocity data.  

 

Figure 4.2. Set-up of PIV configuration to experimentally measure the 
secondary vortex. 



 

60 

The virtual-duct model shown in Figure 4.1 was mounted on a splitter plate 

where the leading edge of the splitter plate was at the same location as the leading-

edge of the model; as such the size of the boundary layer at the leading edge of the 

virtual-duct model was negligible so that no necklace vortex formed on the model.  As 

noted above, the tests were performed on a flat surface rather than on a spherical 

surface as would be the case for the actual deployment of a virtual duct. This was done 

because the planar floor significantly simplifies the experimental arrangement by 

eliminating problems with dark regions and reflections of the PIV laser sheet, alignment 

of the PIV system, etc., that would exist if the measurements were made on a 

spherically-shaped turret, and it was hypothesized that the planar-floor arrangement 

would still produce the essential flow features in the corner of the virtual-duct model. 

The tests were performed at a flow speed of 34.3 m/s, giving a Reynolds number based 

on the model length of 5.2 x 105; this Reynolds number is only slightly lower than the 

Reynolds number for the tests shown in Chapter 3 but higher than the pod study shown 

in Chapter 2. 

 

Figure 4.3. Velocity vectors on the fence found using PIV. 
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 Figure 4.3 shows the PIV velocity vectors in the corner region of the virtual-duct 

model, where the virtual duct fence is on the right side of the picture and the ground-

plane floor is on the bottom. The figure clearly shows that a vortex exists in the virtual-

duct corner, with a clockwise rotation (when viewed from downstream as shown in 

Figure 4.3). The velocity profile of the vortex, taken from the PIV data for a cut 

approximately through the vortex center, is plotted in Figure 4.4, and also clearly shows 

the vortical nature of the flow. This vortex is created by the outward movement of the 

bulk flow near the top of the measurement region and inward motion of the flow near 

the floor. The fastest flow is near the floor as the fluid moves inward towards the center 

of the virtual duct, away from the virtual-duct wall. As such, the clear regions next to the 

virtual-duct walls in the oil-flow visualizations shown in Chapter 3 are caused by a 

sweeping of the oil away from the walls by this high-speed flow near the surface of the 

turret. The PIV data therefore clearly shows the existence of a vortex in the corner of 

 

Figure 4.4. Comparison of the velocity profile through the vortex core 
from the bottom of the wall for the CFD and PIV data. 
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the virtual-duct wall; in the next sections of this chapter, an explanation for the physics 

as well as a model for this vortical flow is presented. 

4.3 Curved Open-Channel Flow 

Due to the unusual shape of the turret with virtual duct, there is nothing in the 

literature that deals specifically with a configuration like this. However, similar flow 

physics to the virtual duct are exhibited by the curved open-channel flow that is 

observed in meandering rivers, Figure 4.5. 

Curved open-channel flow has been studied extensively since the late 1800s due 

to its application to meandering rivers and the erosion of areas around curved bends. 

The existence of a vortical structure in the flow was first identified by Thomson (1876) 

 

Figure 4.5. Aerial view of the Charley River at Yukon, Alaska. Credits to 
Tim Brabets, U.S. Geological Survey (Van Balen 2010). 
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when he noticed that sediments on the bottom of a riverbend were being moved from 

the outer part toward the inner part of the riverbend. The inward motion of the water 

at the bottom of the river along with an outward motion at the surface of the river 

produces this vortical structure. Rozovskii (1957) explained the generation of this 

vortical structure in terms of the local imbalance between the driving centrifugal force 

and the transverse pressure gradient. Due to the boundary layer at the bottom of the 

river, the bulk flow moves outward more easily than the flow near the bottom surface. 

Due to conservation of mass, other fluid must return to the inward portion of the river 

to replace this outward-going flow, and thus the vortex is produced by an inward flow 

near the bottom of the riverbed. Depending on the speed of the fluid, which in the 

virtual-duct’s case is large, a second vortical structure can also appear in curved open 

channel flow. This second smaller cell is referred to as the outer bank cell, or secondary 

flow cell, due to its existence on the outer wall of the curved channel. A schematic of 

the 2 vortices is shown in Figure 4.6.  

4.3.1 Implications to Virtual-Duct Performance and Organization of this Chapter 

Comparison of Figure 4.6 with the PIV data in Figure 4.3 shows that the vortices 

that form in the corners of the virtual duct share the same basic flow physics as the 

vortical structures observed in curved open-channel flow. In effect, the virtual duct can 

be considered as two curved channels, where each wall of the virtual duct represents 

the outer bank of the river in Figure 4.6. 
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The existence of these corner vortices has important implications on the 

performance of the virtual duct. First, the corner vortices will have some kind of fluid-

mechanic effect on the flow within the duct, in the sense that the vortices can be 

expected to induce local velocities that could affect, for example, boundary-layer 

separation in the duct or on the turret, or the maximum flow speed and hence critical 

Mach number within the virtual duct. Pressure-distribution and flow-visualization data 

shown in Chapter 3 did not show, however, any detrimental effect of the corner vortices 

on either the location of boundary-layer separation or the critical Mach number of the 

turret. For example, the flow-visualization data in Chapter 3 showed very similar 

locations for boundary-layer separation for different virtual-duct curvatures, at least up 

to the point at which the curvature was so large that the two corner vortices covered 

the entire downstream face of the turret (i.e. Figure 3.8).  

 

Figure 4.6. General Schematic of flow through a curved channel 
(Van Balen 2010) 
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More importantly, as shown in Porter (2010), streamwise tip vortices like the 

corner vortices produced by the virtual duct can in and of themselves produce aero-

optic aberrations. As explained in Porter (2010), these aero-optic aberrations originate 

from the low-pressure, and hence reduced density, within the cores of the vortices. 

Since, as shown by the flow-visualization data in Figures 3.5, 3.7 and 3.8, the virtual-duct 

corner vortices would pass directly over an optical aperture on the surface of the turret, 

the question therefore arises as to what kind of optical aberration these vortices would 

present to the outgoing beam.   

The remainder of this chapter therefore presents an investigation into the 

optical effect of the virtual-duct corner vortices. Since these vortices cover progressively 

more of the surface of the turret as the curvature of the duct wall increases, the aero-

optic effect of the vortices has significant impact on the overall effectiveness of the 

virtual-duct concept. The chapter is organized as follows: first, previous work on 

modeling curved open-channel flow is reviewed and presented. This model is then 

validated for the virtual-duct configuration; due to the difficulty in experimentally 

measuring the flow within the virtual duct, much of this validation is performed using 

CFD studies. This is done by first comparing the CFD to the simplified experiments 

performed using the virtual-duct model mounted on a flat ground plane (i.e. Figure 4.4). 

Once the CFD approach is established that matches this simplified configuration, then 

additional CFD computations are shown for the more-complex configuration of the 

virtual duct mounted on a spherical turret. Finally, the validated model for the corner 

vortices is used with the results of previous investigations into the aero-optic effect of 
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tip vortices (Porter 2011b) to develop predictions for the aero-optic effect that the 

corner vortices would have on an outgoing beam.  

4.4 Validation of Computational Approach 

Numerous computational studies (Booij 2003; Constantinescu 2011; Kashyap 

2012; Stoesser 2010; Van Balen 2009) have been performed into open-channel flow and 

show general agreement with experimental studies (Blanckaert 1999; Blanckaert 2004; 

Booij 2003; Hille 1985; Van Balen 2009). A common observation from the computational 

studies is the need for an advanced turbulence model, capable of accurately resolving 

turbulence anisotropy effects and the kinetic energy transfer between the mean flow 

and turbulence in order to capture the velocity redistribution (Constantinescu 2011).  

 

 

Figure 4.7. Comparison of measured (black circles), RANS- (dashed blue 
line), DES- (red line), and LES-computed (solid black line) velocity profiles 
of the non-dimensional transverse velocity in an open-channel flow. The 

outer wall is on the right (Constantinescu 2011). 
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 An example of an investigation into computational modeling of open-channel 

flows is presented in Constantinescu (2011), which shows a comparison of DES, LES, and 

RANS CFD with experimental data. Figure 4.7 shows a comparison of the velocity 

profiles of the transverse velocity at the 60 degree location of the channel bend. Looking 

at the outer profile, the profile furthest to the right in Figure 4.7, DES shows a closer 

level of agreement with the experiment when compared to RANS. In fact, comparisons 

of the strength of the cross flow motions in relevant cross sections showed that the 

circulation of the main cell was consistently and significantly under predicted by RANS 

compared to DES (Constantinescu 2011). 

Other studies by Booij (2003) and Stoesser (2010) also compare RANS solutions 

to DES and LES solutions and arrive at a similar conclusion that RANS turbulence models 

do not capture the anisotropy effects needed to correctly model the flow in a curved 

channel. Booij (2003) states that RANS computations can produce the main 

characteristics of the main flow and the secondary flow in curved flows; however, RANS 

fails to give satisfactory reproductions of the complicated secondary flowfields in the 

channel. Although a well-resolved LES would give the best solution, it is too 

computationally expensive to simulate the flow at high Reynolds numbers 

(Constantinescu 2011). As such, DES was selected as the preferred solver for CFD 

investigations of open-channel flows in this research, due to its satisfactory accuracy 

and reduced computational expense compared to LES.  
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4.4.1 DES Modeling of PIV Experiment 

 Based on the preceding discussion, CFD modeling of the flow in the virtual duct 

was performed using a DES solver. All computations were completed using the 

commercial CFD program, Fluent, using 2nd-order accuracy and the unsteady, pressure-

based solver. The DES solver that was employed used the  SST k- RANS model near the 

solid walls. The grid was fully structured and had an initial height away from the no-slip 

walls that corresponded to y+ less than 1, which is typically considered sufficient 

resolution for the computations in the boundary layer.  

 To validate the ability of this DES approach to model the flow in a virtual duct,  a 

DES run was first performed for the exact experimental geometry of the PIV 

 

Figure 4.8.(Left)  CFD run of PIV set-up showing the formation of the 
vortex near the wall of the fence. (Right) Comparison of the velocity 

profile through the vortex core from the bottom of the wall for the CFD 
and PIV data. 
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measurements shown in Section 4.2. The computational mesh used for this validation 

test consisted of roughly 1.6 million cells. Figure 4.8, Left, shows the DES-computed 

pressure distribution in a cross section of the virtual duct, viewing in the flow direction 

with the virtual duct fence shown in the left portion of the figure; the figure clearly 

shows the existence of a low-pressure region associated with the core of the vortex 

located just to the right of the virtual-duct wall. To better compare the DES to the PIV 

results, Figure 4.8, Right, shows the DES-computed velocity distribution through the 

core of the vortex overlayed on the velocity distribution measured in the PIV tests and 

shown previously in Figure 4.4. Figure 4.8, Right, shows that the DES-computed velocity 

distribution matches the measured velocity distribution almost exactly.  In fact, near the 

bottom wall region, the DES also captures the boundary layer that was measured in the 

PIV test; this boundary layer forms due to the no-slip condition on the planar floor and 

the strong inward flow away from the virtual duct wall. More importantly, the DES 

captures the velocity profile of the vortex, and accurately models both the core radius 

and the circulation of the experimentally-measured corner vortex. Overall, the close 

agreement between the DES-computed and experimentally-measured velocities in the 

corner vortex shows that the DES solver can be used to model with reasonable accuracy 

the formation and properties of the corner vortex in the virtual duct.  

4.5 DES Modeling of Virtual Duct 

The DES approach validated in the previous section was next applied to the 

regular spherical-turret-with-virtual-duct configuration. For these computations, the 
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DES model used the same computational parameters described before, specifically, the 

computations were performed using the DES solver in Fluent, using a fully-structured 

grid with y+ on the surface of the hemisphere of 1 or less.  For all of the models, the 

Reynolds number, based on the diameter of the turret, of the computations was around 

6.8 x 105, which matches the experimental tests in Chapter 3 and is large enough so that 

the boundary layer over the turret was turbulent. 

 

 

Figure 4.10. Isometric (left) and plan (right) view of turret with flow in 
positive x-direction. The fence is defined by 3 points.  

 
 

 

 

Figure 4.9. Virtual duct wall shapes computed using DES. The wall radii 
are, from left to right, 0.099, 0.120, and 0.166 meters. 
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The computations were performed for 3 different virtual duct wall radii, R = 

0.099, 0.120, and 0.166 m, which are different from the virtual-duct shapes that were 

experimentally tested in the previous chapter, but are still able to show the effect of 

changes in virtual-duct curvature radius. A top view of each fence shape is shown in 

Figure 4.9. The fence wall coordinates were determined using fifth-order polynomials 

 

 

Figure 4.11. DES-computed crossplane pressure distribution inside virtual 
ducts with R = 0.099 (top left), R = 0.120 (top right) and R = 0.166 

(bottom) m. Note that the highest curvature duct (top left) produces the 
strongest vortex core with the lowest pressure. Note the change in 

legend values for the bottom figure. 
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for both the diffusing and contracting sections: 

yd = ad+bd x+cd x
2
+dd x

3
+ed x

4
+fd x

5
 and 

yc = ac+bcx+cc x
2
+dc x

3
+ec x

4
+fc x

5 .   
(4.1) 

The six constants a, b, c, d, e, and f for each section were determined by the six 

boundary conditions consisting of the chosen starting and ending azimuthal locations of 

the fence, plus zero slope and curvature at the start and end of each section of the 

fence. As such, a unique fence shape can be defined by choosing the locations of three 

points on the fence, consisting of the leading- and trailing-edge points and the point of 

maximum diffusion of the fence, that is, the points 1, 2, and 3 as shown in Figure 4.10. 

The effective radii of the virtual ducts were determined by superposing a circle on the 

 

Figure 4.12. Two-dimensional flowfield around a cylindrical core rotating 
as a rigid body (Katz 1991).  
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three points, and determining the radius of this circle; as shown below, the effective 

radii computed in this way provides a single parameter for the virtual-duct curvature 

that can be related to the global performance of the virtual duct.  

Figure 4.11 shows computed pressure distributions in the virtual ducts for the 

three computational models. The figure clearly shows the existence of vortices in the 

corners of the virtual ducts. The 3 CFD calculations also show that as the radius of 

curvature of the fence decreases, the strength of the vortex increases. 

As will be shown below, the key parameters that determine the aero-optic effect 

of a tip vortex are the circulation of the vortex and the core radius of the vortex. These 

two parameters were determined from the DES-computed results for each of the 3 

virtual-duct models. Specifically, vortex flowfields typically vary as       , with a 

viscous core that exhibits a linear velocity change between the peak rotational 

velocities, Figure 4.12 (Katz, 1991). As such, the core radius was determined as one half 

 

Figure 4.13. Left, Tangential velocity through vortex core on a virtual duct 
for varying curvature ratios. Right, Tangential velocity through vortex 

core for smallest curvature ratio showing the core diameter. 
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the distance between the points of maximum tangential velocity in the vortex. As an 

example, Figure 4.13 right shows the tangential velocity through the vortex core for the 

lowest radius of curvature case, R = 0.099 m. The viscous core is shown in Figure 4.13 

between the minimum and maximum tangential velocities. The core radius, rc, was 

found to be 0.0403D (12.3 mm). Once the core radius was determined, the circulation 

was computed using: 

           (4.2) 

where v is the velocity along the path of the closed integral taken around the core 

radius (i.e. outside of the inner viscous core). 

 Figure 4.14 shows how the core radius and circulations computed using DES CFD 

varies with the radius of the virtual duct. The figure shows that both the circulation and 

the core radius increase as the duct radius decreases. Based on the physical explanation 

for the cause of the corner vortices (see Figure 4.6), the results of Figure 4.14 make 

 

Figure 4.14. DES solutions for the circulation (left) and core radius (right) 
of corner vortices for flow over a turret with different virtual-duct radii.  
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sense in that a higher curvature of the virtual duct (i.e. smaller radius of curvature) 

would produce greater motion of the bulk flow to the outside of the duct resulting in a 

stronger vortex.  

4.6 Scaling of Corner Vortex Parameters 

4.6.1 Open-Channel Flow Studies 

As mentioned above, previous studies into the flow in curved open channels 

have been primarily concerned with the flow in water channels, including streams and 

rivers. An example of a study of the circulation of the streamwise vortex in curved open-

channel flow was completed by Kashyap (2012), who investigated the circulation 

strength of the vortex in water channels of different curvature ratios; a typical geometry 

investigated by Kashyap is shown in Figure 4.15. For his investigation, Kashyap defined a 

nondimensional curvature ratio, R/B, as the ratio of the radius of the curvature of the 

bend, R, to the width of the bend, B. Kashyap looked at five curvature ratios using a CFD 

simulation (R/B = 1.5, 3.0, 5.0, 8.0, and 10.0) and compared it with one curvature ratio 

that was tested experimentally. The CFD simulations were completed using a steady 

finite-volume 3D RANS viscous solver with a standard Reynolds Stress Model (RSM) 

closure. The RSM model was used because it can account for the turbulence anisotropy 

discussed above (Kashyap 2012).  
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 Figure 4.16 shows streamline patterns (left) and streamwise velocity, u/U (right) 

for 3 different cross sections tested computationally; these figures show that the CFD 

successfully reproduced the streamwise vortices.  More importantly, Figure 4.17 shows 

the circulation compared to the curvature ratio of the bend. From Figure 4.17, it is 

noted that as the curvature ratio increases (i.e. the bend becomes more gradual) the 

strength of the vortex produced is smaller. This trend matches qualitatively the DES 

results for the virtual duct shown in the previous section. It also matches the 

experimental flow-visualization results shown in Chapter 3, in the sense that as the 

curvature of the virtual duct increases, the vortex becomes larger and stronger as 

shown by the larger oil-free zones next to the virtual-duct walls. 

 

Figure 4.15. View of mesh and geometry of the curved channel studied in 
Kashyap (2012). This configuration has is an R/B of 1.5. 
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4.6.2 Testing of Open-Channel Scaling Approach 

Perhaps the most significant observation of Figure 4.16 and Figure 4.17 is that 

Kashyap nondimensionalizes the open-channel data by the flow speed and by geometric 

parameters only, that is, U and B.  

   
 

   
   (4.3) 

 In particular, the Reynolds number does not appear in the nondimensionalization of the 

open-channel data, indicating that Reynolds-number effects do not influence the 

strength or size of the corner vortices. 

Kashyap’s nondimensionalization approach was also tested for the virtual-duct-

on-hemispherical-turret results computed in Section 4.5. Figure 4.18 shows the results 

of this nondimensionalization. The figure shows that the nondimensionalization 

approach successfully collapses all of the DES data for the virtual duct onto a single 

 

Figure 4.16. Comparison of 2D streamline patterns (left) and streamwise 
velocity, u/U, (right) at the 135° cross section. 
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curve, despite large differences in Reynolds number used in the computations. For 

example, Figure 4.18 (Left) shows that a virtual-duct solution at   = 0.5 produces the 

same * as the solution at    = 0.1.  

Figure 4.18 (Right) also includes DES computations of the simplified virtual duct 

case with a flat floor; the figure shows that these data also match the scaling reasonably 

well. Specifically, two DES solutions for the same wall curvature were computed at two 

different Reynolds numbers, but at the same freestream velocity; i.e., the different 

Reynolds numbers were obtained by changing the viscosity of the fluid, where one 

computation was performed using the viscosity of air and a second used the viscosity for 

water. The results of these computations are shown in Figure 4.18 (Right), which shows 

that the two computations produce roughly the same nondimensional * despite 

having significantly different Reynolds numbers. As such, the CFD results for the virtual 

 

Figure 4.17. Variation of nondimensional gamma with curvature ratio for 
water flow in a curved channel (Kashyap, 2012). 
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duct also support the finding that the corner-vortex circulation is independent of 

Reynolds-number effects. 

A curve fit to the nondimensionalized virtual-duct data for curvature ratios 

between roughly 0.5 and 4 (circles in Figure 4.18 Left) is 

   
 

  
           

      
  (4.4) 

For comparison, the virtual-duct-on-hemispherical turret results are shown on the same 

plot as Kashap’s results for a curved channel in Figure 4.19. The figure shows that the 

curved channel produces noticeably larger * than the virtual duct geometry. Although 

only very rough comparisons between the virtual-duct and open-channel results can be 

made in Figure 4.19 due to the geometrical differences between the two configurations, 

a possible explanation for the difference is that all of the water that enters the curved 

channel is forced outward to produce the vortex so that all of the entering fluid 

contributes to the strength of the vortex. On the other hand, for the virtual duct, some 

 

Figure 4.18. Nondimensional Gamma as a function of curvature ratio for 
flow through a virtual duct on a hemispherical turret (Left) and a planar 

floor (Right). 
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of the fluid escapes over the top of the fence, so that not all of the flow entering the 

duct contributes to the strength of the vortex. Nonetheless, both the river-channel and 

virtual-duct geometries show the same trend that the smaller the bend radius, the 

stronger the vortex that is produced. 

A similar curve fit for the core radius is  

  
 
           

      
  (4.5) 

Figure 4.20 shows that, as the curvature ratio decreases, the core radius increases. 

Looking back to the pressure distributions inside of the virtual duct; Figure 4.11, the 

larger core radius is seen by the larger area of low pressure. This effect is also supported 

by the flow visualization study completed in Chapter 3, in the sense that when the 

virtual-duct curvature increases, the oil-free zones near the virtual duct fences become 

larger.  

 

Figure 4.19. All circulation data from Kashyap (2012) and the virtual duct 
study. 
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 Using the nondimensional relationships shown in Equations (4.4) and (4.5), the 

next section shows an estimation of the optical effect of the corner vortices on a beam 

of light passing through the flowfield inside of a virtual duct. 

4.7 Estimation of Aero-Optic Effect of Corner Vortices 

 A method for determining the optical effect of a tip vortex was developed by 

Porter (2011b). Porter showed that the density field and hence optical aberration 

associated with a tip-vortex flow is a function of the core radius and the circulation 

strength of the vortex. Note that an estimation of the optical aberration of the corner 

vortices could also be determined directly using the density field from the CFD results 

 

Figure 4.20. Core radius as a function of the Curvature ratio for the vortex 
inside of a virtual duct. 
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for the turret with virtual duct; however, Porter’s approach was used due to its 

validation against experimental optical measurements of tip-vortex flows. 

 Porter’s approach follows the solution outlined in Bagai and Leishmen (1993), 

which is repeated here for completeness. Starting with the Euler equations for 

axisymmetric flow with no radial velocity component: 

  
 

 
 
 

 

  

  
 

  
   
  

 
 

 

  

  
   

(4.6) 

For tip-vortex flows, the streamwise pressure gradient is typically much smaller than the 

radial gradient and can be neglected. For a vortex with a Lamb-Oseen velocity profile: 
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the radial component of Equation (4.6) is:  

  

     
       

 
    

 

 
 

 
 

 

  

  
   

(4.8) 

For isentropic flow, the right side of Equation (4.8) can be linearized as: 

 

 

  

  
 
   

 

  

  
   

(4.9) 

Inserting Equation (4.9) into Equation (4.8) and integrating gives the density profile for 

the tip vortex: 

  
   

 

        
  
 

  
      

(4.10) 

where the function f is given by: 
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(4.11) 

and Ei is the exponential integral in the form of the Cauchy principal value integral. An 

example of a density profile computed using Equation (4.10) is shown in Figure 4.21; the 

profile shows a lower density at the center of the vortex and, further from the core, the 

density returns to its freestream value.  

The optical path difference for a beam of light passing through the density field 

shown in Equation (4.10) is computed using Equations (1.5) through (1.7):    

 

Figure 4.21. Density as a function of distance from the core center. 
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  (4.12) 

where 

     
 

  
          
 

  

  (4.13) 

In the above equations, r is defined as the distance from the center of the vortex. As 

described in Chapter 1, once the OPD(x) distribution is known, the farfield effect of the 

vortex can be determined using the Fraunhofer approximation (Equation (1.2)), and a 

single-parameter representation of the effect of the vortex can be determined by 

computing the Strehl ratio, Equation (1.3).  

 Based on the above approach, a simple estimate for the optical effect of the 

corner vortices was generated as follows. First, the estimate was generated for the 

condition of a beam passing through the corner vortex perpendicularly to the axis of the 

 

Figure 4.22. Schematic of beam passing between virtual duct fences. The 
2 vortices are located at the corner between the hemisphereical turret 

and the virtual duct fences. (Right) An unaberrated outgoing beam 
(bottom) will have an aberrated wavefront (top) after encountering the 

vortices. 
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vortex; this geometrical definition was selected because it conforms to the assumptions 

of Equations (4.10) to (4.13) and because it gives a reasonable approximation for the 

general optical effect of the corner vortices. Furthermore, it was assumed that 2 

vortices pass over the aperture (1 for each corner of the virtual duct), and the location 

of the corner vortices on the aperture was estimated from the DES simulations 

described in Section 4.5. Finally, it was assumed that the two corner vortices that lie on 

the aperture do not interact, such that the optical effect of the each vortex could be 

computed independently using Equations (4.10) to (4.13) and then added later. A 

schematic of the estimation approach is shown in Figure 4.22. Note that the location of 

the center of the vortex varies slightly depending on the curvature ratio, R/B, of the 

virtual-duct fence; however, a constant value was chosen of x/AD = 0.45 that represents 

the middle of the range of values.  

 Figure 4.23 shows the OPD across half of the aperture for the case of a virtual 

duct with a curvature ratio of 1.88 at    = 0.5. The left part of the figure shows the 

vortex in 2-D space, where the surface of the turret is on the bottom and the virtual 

duct fence is on the right. The right part of the figure is the resulting aberration 

produced by the vortex. The locations of the two corner vortices can be seen by the 

decrease in OPD at x/AD = 0.45. Figure 4.24 shows the farfield effect of the OPD 

distribution in Figure 4.23, computed using the Fraunhofer approximation (Equation 

(1.2)) and assuming an outgoing beam with a wavelength of 1 m. The Strehl ratio for 

this case is 0.68.  

   



 

86 

 Figure 4.25 shows the results of a parametric investigation of the effect of 

freestream Mach number and virtual-duct curvature ratio on the optical effect of the 

corner vortices.  The figure shows that the Strehl ratio decreases substantially as the 

radius of curvature of the virtual-duct fences decreases and the circulation of the 

resulting corner vortices increase. The Strehl ratio also decreases as the freestream 

Mach number increases, which also increases the strength of the corner vortices.  

 One major feature of Figure 4.25 is the large variations in Strehl ratio as R/B 

becomes very small. These variations are caused primarily by the splitting of the beam 

on-target irradiance by the vortex aberrations (see Figure 4.26) and that, as the strength 

of the corner vortices increase, the outer and inner parts of the vortex aberration 

produces constructive and destructive interference. In particular, Figure 4.26 shows the 

 

Figure 4.23. Non-dimensional density, left, and resulting OPD, right, 
inside half of the virtual duct, the other half is mirrored across the x = 0 

axis. This case is for a curvature ratio, R/B, of 1.88 at    = 0.5. 
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OPD and farfield irradiance patterns as the strength of the corner vortices increase, for 

   = 0.8. The figure shows that, as the strength of the vortex aberration increases, the 

aberration first produces a progressively split farfield pattern with multiple lobes that 

are displaced from the aim point; however, as the strength of the vortices increase still 

further, constructive interference between the inner and outer parts of the vortex 

aberration begins to produce a lobe back on the aim point.   

Note that the farfield patterns in Figure 4.26 and the Strehl ratio values in Figure 

4.25 were computed using the Fraunhofer approximation, Equation (1.2), and that the 

Strehl Ratio values would be significantly lower if the Large-Aperture Approximation 

(LAA), or Marachel Approximation, Equation (1.4), were used. This fact illustrates the 

 

Figure 4.24. The farfield effect of the OPD distribution in Figure 4.23, 

computed using the Fraunhofer approximation,  = 1 m. 
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limitation of the LAA, in which a normal distribution of the probability function of the 

wavefront is assumed.  Figure 4.27 shows a similar result obtained by Gordeyev (2014) 

which compares the Strehl Ratio computed using the LAA as a function of the OPDrms for 

aberrations with different probability distributions; the figure also shows that the Strehl 

Ratio can be significantly different from the LAA result depending on the nature of the 

optical aberration.    

  

 

Figure 4.25. Strehl Ratio as a function of the curvature ratio and 
freestream Mach number. 
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Figure 4.26. OPD, left, and farfield irradiance, right, for different curvature ratios at   = 
0.8. Look at Figure 4.25 showing the local minimum and maximum of SR plotted. 

Curvature ratios, R/B, are a) 2.1, b) 1.5, c) 1.04, d) 0.89, e) 0.74, f) 0.62, g) 0.58, and h) 
0.53. Figure on pages 89-91. 
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 It should be noted that the estimates provided in this section only show the 

approximate magnitude of the optical aberration caused by the corner vortices. 

Specifically, the calculations do not account for temporal variation of the aberrations or 

turbulence in the vortex core; this temporal variation and turbulence could change the  

farfield irradiance patterns and Strehl Ratios from that shown in Figure 4.25; however, 

Figure 4.25 still provides a reasonably accurate first approximation of the effect of the 

corner vortices.   

In general, Figure 4.25 shows that if no AO compensation is used, a Strehl Ratio 

of roughly 0.55 or higher can be achieved for Mach numbers of 0.8 or lower if the 

 

Figure 4.27 Strehl Ratio vs OPDrms showing the instability in using the 
Large Aperture Approximation at larger OPDrms values (Gordeyev 2014). 
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virtual-duct curvature ratio is only 3. On the other hand, if the curvature ratio is 1 then 

the Strehl Ratio falls below roughly 0.3 for all Mach numbers above 0.5. In the following 

section, an idea of the kind of curvature ratio that would be necessary in practice is 

examined in more detail.  

4.8 Conclusions 

The secondary vortices that form in the corners between the virtual-duct wall 

and the sphere were investigated using a combination of experiments and CFD to 

understand the effects on an outgoing beam. The investigation showed that as the 

curvature of the virtual-duct fences decreases, the circulation of the corner vortices 

decreases and the core radius decreases; both of these effects mean that the corner 

vortices have a stronger optical effect on an outgoing beam as the virtual-duct curvature 

increases. As such, it is desirable to use a virtual duct with the minimum curvature 

necessary to achieve the design objectives of an optical system. The next section 

presents a method of determining the optimum virtual-duct shape to achieve given 

design objectives.  
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CHAPTER 5:   

GEOMETRY OPTIMIZATION 

The results of Chapters 2 and 3 showed how a virtual-duct design developed in a 

trial-and-error fashion can improve the critical Mach number and/or boundary-layer 

separation performance of a pod or canonical spherical turret. There is, however, no 

guarantee that the designs that produced the improved results shown in Chapters 2 and 

3 were optimum, or even nearly-optimum designs, and that even better performance 

cannot be achieved with a better design. Considering the basic virtual-duct concept 

shown in Figure 3.1, it is clear that there are a multitude of possible fence designs that 

would result in an improvement over the unmodified hemispherical turret 

configuration.  

One method of moving towards the optimum virtual-duct design is to use 

design-optimization techniques. Furthermore, even before the optimization routine is 

run, Design of Experiments (DoE) screening methods can be employed to find the most-

important design variables to use in the design-optimization approach.  Once the 

important design variables are found, the details of a design are improved in an iterative 

fashion, where each iteration moves the design closer to a user-defined goal defined by 

an “objective function.” This chapter summarizes an investigation into the optimum 
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virtual-duct configuration using Design of Experiments screening techniques and design-

optimization techniques, and summarizes the results obtained. 

5.1 Design of Experiments 

In Chapter 3, a process of using a guess and check method is outlined, showing 

that minor changes to the fence shape can have different effects on the surface 

pressure measurements. This “best-guess approach” is frequently used in practice by 

engineers and scientists, and usually works reasonably well, but it has two main 

disadvantages. First, if the initial best guess does not produce the correct result, the 

designer must take another guess at the design configuration. The second problem is 

that if the initial guess produces an acceptable result, the designer is tempted to stop 

testing without a guarantee that the best solution is found (Montgomery 2009). This 

problem seemed to happen with the underwing pod wind tunnel experiment; except 

that the next guess could not be completed since the model was made for only 1 virtual-

duct fence shape. 

The next step would be to move on to a “one-factor-at-a-time” approach where 

a baseline set of design parameters are identified, and then each one is perturbed one 

at a time to see the effect. This once again is an effective strategy, but still does not 

guarantee success, since it does not account for the interaction of any variables. 

Considering the virtual duct described in Chapter 3, if the maximum diffusion point is 

moved out, the diffusion and contraction of the virtual duct will both be increased; 

however, if it is only desired to have a strong contraction of the flow, then this first-
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order study would not find it. Therefore the correct approach to dealing with several 

factors is to conduct a Design of Experiments (DoE) screening study to look at possible 

interactions between variables.  

A common DoE study is known as a “factorial experiment” (Montgomery 2009) 

where the effect of design variables is examined together, instead of one at a time. The 

method used in this investigation is the 2k method, discussed in detail in Chapter 6 of 

Montgomery (2009) and also by Lundstedt (1998). The k represents the number of 

design variables to vary. A baseline value is selected for each variable and then the 

variable is perturbed slightly. By changing each variable systematically, the effect of 

each variable and its interactions with other variables can be found. If 2k function calls 

are too many, a method to decrease the function calls is known as the 2k-2 method. This 

method decreases the number of function calls needed, but also decreases the accuracy 

of the DoE.  

In the following sections, DoE methodology is applied to two design problems 

related to the virtual-duct concept. First, the DoE approach is applied to the design of a 

simple fairing for a hemispherical turret, such as might be used to improve the critical 

Mach number for the turret. Following this, the DoE approach is also applied to the 

design of the virtual duct for a hemispherical turret. For the optimization of a fairing, the 

2k method is used since there are fewer variables, but for a turret on a virtual duct, the 

2k-2 method is used to minimize the function calls. The beginning of the next 2 sections 

gives an overview of each study.  
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5.1.1 DoE Analysis of Fairing   

In this section, the Design of Experiments (DoE) approach is first applied to the 

design of a downstream fairing for a spherical turret. As discussed in Chapter 2, the 

purpose of the fairing is to reduce the local curvature of the overall shape, thereby 

reducing the flow acceleration around the turret and hence increasing the critical Mach 

number. Note that for this study, it was assumed that the fairing would be sufficient to 

eliminate flow separations in the vicinity of the optical aperture regardless of the fairing 

shape, so the DoE focused on the effect on critical Mach number only. 

The basic turret configuration used in this section is a canonical hemisphere-on-

cylindrical-base turret, similar to the one shown in Figure 1.3; however, the results 

obtained are also generally applicable to the aircraft-mounted pod configuration 

examined in Chapter 2. The height for the cylindrical base of the turret was fixed at D/3 

 

Figure 5.1. Aft fairing defined by 4 points to be studied. 
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(where D is the turret diameter); this base height is commonly used for hemispherical 

turret configurations and has been shown to be sufficiently high that the hemispherical 

turret is not influenced by the incoming boundary layer on the surface, or the resulting 

necklace vortex as shown in Figure 1.9 (Gordeyev 2010).  

Other assumed design features for the fairing were that the fairing would be 

rotationally symmetric with an ogive-shaped tail (dotted line in Figure 5.1), and that a 

cubic-shaped forebody (Equation (2.2)) would be used to blend the fairing into the 

hemispherical turret (solid line in Figure 5.1). With these assumed design features, the 

shape of the ogive tail is fully defined by the position of the trailing edge (x3) and the 

maximum width of the fairing (x2 and y2 (or z2)). The cubic forebody is also fully defined 

by the boundary conditions consisting of the point of contact with the turret ball (point 

1 in Figure 5.1), the condition of zero slope at the point that the cubic forebody blends 

into the ogive tail, and the condition of matching the slope of the cubic forebody with 

the slope of the turret ball at the point of contact with the turret ball.   As such, with the 

given design assumptions, a unique fairing shape is defined by the selection of the 

points 1 to 3 shown in Figure 5.1; more specifically, a unique design is specified by the 

selection of the 4 values x1, x2, y2, and x3. 

Since the fairing shape can be defined by 4 parameters, a 2k factorial DoE 

approach was implemented with k = 4 to determine the most important parameters and 

combinations of parameters. In the 2k design approach, 2k combinations of the 

important design parameters are created and the resulting design configurations are 

analyzed to determine their effect on the performance parameter of interest (i.e. critical 
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Mach number for this case). Once the design configurations are analyzed, a numerical 

value, , is found that represents how much each parameter, and combination of 

parameters, affects the critical Mach number. Once the total effect for each parameter, 

and combination of parameters, is found, a percentage is computed to show how much 

it affects the critical Mach number. This percentage is used to determine which 

variables have the strongest effect on the solution and need to be included in the 

optimization. 

 

TABLE 3  

VALUES FOR EACH VARIABLE USED IN THE DOE SCREENING STUDY FOR 

THE FAIRING, D REPRESENTS THE DIAMETER OF THE TURRET. 

CFD Run x1 x2 y2 x3 MCRIT 

1 0.1D 1.8D 1.1D 4.5D 0.608 

2 0.3D 1.8D 1.1D 4.5D 0.704 

3 0.1D 2.2D 1.1D 4.5D 0.595 

4 0.3D 2.2D 1.1D 4.5D 0.746 

5 0.1D 1.8D 1.3D 4.5D 0.626 

6 0.3D 1.8D 1.3D 4.5D 0.444 

7 0.1D 2.2D 1.3D 4.5D 0.622 

8 0.3D 2.2D 1.3D 4.5D 0.718 

9 0.1D 1.8D 1.1D 6.5D 0.615 

10 0.3D 1.8D 1.1D 6.5D 0.725 

11 0.1D 2.2D 1.1D 6.5D 0.603 

12 0.3D 2.2D 1.1D 6.5D 0.756 

13 0.1D 1.8D 1.3D 6.5D 0.642 

14 0.3D 1.8D 1.3D 6.5D 0.649 

15 0.1D 2.2D 1.3D 6.5D 0.632 

16 0.3D 2.2D 1.3D 6.5D 0.734 
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TABLE 3 shows the values of the parameters x1, x2, y2, x3 generated by the 2k 

method. As discussed above, each combination of parameters produced a unique fairing 

shape, which was analyzed using the Euler routines in the CFD program, AVUS. In this 

case, Euler routines were used since it was expected that the fairing would ensure 

attached flow so that the flow on the turret and fairing would be well represented by 

the Euler solutions. The grid was generated using Gambit and consisted of about 1 

million unstructured grid points depending on the exact geometry of the fairing. 

Furthermore, the CFD solutions were computed at    = 0.1, since the critical Mach 

number could be computed from the resulting pressure distribution and Equation (1.8).  

The most important output of the DoE analysis are the influence parameters, , 

which show the magnitude of the effect that a particular design parameter or 

combination of parameters has on the design objective (i.e. Mcrit in this case). An 

illustration of how the DoE influence parameters,  are computed can be obtained by 

examining the parameter x1 in TABLE 3. It has a high value of 0.3D (highlighted in gray) 

and a low value of 0.1D (not highlighted) where the front of the turret is at 0.0D. By 

taking the average of the critical Mach number for all the CFD runs with a high x1 value 

of 0.3D and the average for all the CFD runs with a low x1 value of 0.1D, the difference, 

, shows how much this parameter affects the critical Mach number: 

                     
                              

                    (5.1) 

The absolute value of  is computed since only the magnitude of the effect on critical 

Mach number is important. 
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Once a  is found for each variable, and combination of variables, all the values 

are added up to produce a total change of the critical Mach number:  

                  (5.2) 

Finally, by normalizing by the total change, the relative effect of each parameter or 

combination of parameters on the critical Mach number is obtained as a percentage. 

TABLE 4 shows the percent contribution of each influence parameter. 

 TABLE 4 shows that the x1 variable contributes the most toward the total change 

TABLE 4 

RELATIVE EFFECT OF EACH PARAMETER OR COMBINATION OF PARAMETERS ON MCRIT, 

COMPUTED USING DESIGN OF EXPERIMENTS APPROACH. 

Influence 
parameter 

Total 
Change 

Percent 
Contribution 

    0.089 35.00% 
    0.026 10.33% 
    0.013 5.04% 
    0.014 5.43% 
      0.036 14.15% 
      0.038 14.93% 
      0.004 1.42% 
      0.014 5.63% 
      0.003 1.13% 
      0.002 0.93% 
        0.012 4.55% 
        0.002 0.64% 
        0.000 0.15% 

        0.000 0.15% 

          0.001 0.54% 
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at a percent contribution of 35%. This is obvious since this influence parameter defines 

the location of the front of the fairing, and hence would be expected to affect the flow 

in the region of the turret the most. Y2 and x2 also have strong effects on the solution 

when combined with x1. This is due to the fact that the combination of these variables 

helps control the slope of the fairing near the turret. If x2 (or y2) is too close to the 

turret, the fairing angle will be too steep and will produce local high-speed flow. The 

location of the back of the fairing has little effect on the solution according to this study, 

but it should be noted that the DoE study placed the last point 4.5-6.5 ball diameters 

downstream of the turret. If the back of the fairing is moved much closer to the turret, it 

will have a stronger effect on the solution since the overall shape will begin to perform 

much like a turret without a fairing. As such the back of the fairing was held constant for 

the optimization study to be discussed later in this Chapter.  

As shown in TABLE 3, the critical Mach number values produced by the DoE 

study varied from .595 to .756; however, as discussed in Chapter 2, it would be 

preferable if the fairing produced critical Mach numbers of 0.8 or higher, which is closer 

to the cruise speeds of jet transports or fighters. It should be noted, however, that DoE 

screening methods do not produce an optimized design; rather, DoE screening methods 

merely identify the most important design parameters, and optimization routines are 

necessary to converge to a design with a critical Mach number closer to 0.8. Based on 

the percent contributions shown in TABLE 4, it is apparent that x1, x2, and y2 are the 

most important parameters needed in any optimization routine. As such, x3 will be left 

out of the optimization for the faring. This is advantageous as it will decrease the 4-
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variable optimization routine into a 3-variable optimization routine producing fewer 

function calls and ultimately a shorter time to converge to a solution. This optimization 

study will be discussed in more detail later in the chapter. 

5.2 Development of Fast Solution Methodology for Virtual Duct 

 In the DoE analysis of the fairing shown in the preceding section, an Euler routine 

was used to compute solutions for the different fairing geometries that came out of the 

DoE analysis; the use of an Euler routine in this case was possible due to the highly-

streamlined fairing shapes that were examined such that boundary-layer separation 

could be assumed to be minimal or nonexistant. On the other hand, the virtual-duct-on-

spherical-turret geometries are not streamlined, such that the analysis routine must be 

capable of predicting boundary-layer separation with reasonable precision. 

Furthermore, as discussed in Chapter 4, CFD computations of the virtual duct should 

 

Figure 5.2. Isometric (left) and plan (right) view of turret with flow in 
positive x-direction. The fence is defined by 3 points that are adjusted to 

find the optimum shape to minimize the objective function.  
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ideally be computed using a DES scheme in order to accurately capture the corner 

vortices that form in the virtual duct. 

Use of DES computations in the DoE analysis represents a large computational 

expense, however. Furthermore, as will be discussed below, in addition to the more-

accurate DES simulation of the virtual duct, it is also advantageous to have available a 

faster, less-accurate analysis technique as part of the optimization process that can 

produce results rapidly with only a small reduction in accuracy. As such, a computational 

approach was developed for the virtual-duct configurations in which an Euler code is 

used in combination with a separate routine to predict boundary-layer separation.  

Specifically, the location of boundary-layer separation was predicted from the Euler data 

using a pressure-based prediction algorithm called the Stratford criterion; this 

methodology is described in further detail below. The critical Mach number for the 

 

Figure 5.3. Pressure distributions of the Euler solution for flow through 
the virtual ducts shown in Figure 5.4. 
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virtual-duct design configurations was also computed from the Euler solutions from the 

minimum predicted, CP, as described in Chapter 2. 

An illustration of the ability of the Euler CFD to generate useful information 

regarding the virtual-duct performance is shown in Figure 5.3. The figure shows 

pressure distributions along the centerline of the turret (between the virtual-duct 

fences) computed using the Euler routine in FLUENT with a fully structured mesh for 3 

different virtual ducts with different curvatures; diagrams of the 3 virtual-duct shapes 

are shown in Figure 5.4. These shapes are the same fence shapes as those used in the 

DES CFD study shown in Chapter 4 (but are different from the virtual-duct shapes tested 

experimentally in Chapter 3). Referring to Figure 5.3 and Figure 5.4, it is possible to 

discern a clear relationship between the virtual-duct geometry and the Euler-computed 

pressure distributions along the centerline of the turret. Specifically, all three virtual-

duct geometries have the same inlet width and starting location, and also have very 

similar pressures at the inlet location of around an elevation angle of 60° in Figure 5.3. 

Downstream of the inlet, however, it is possible to see a clear relationship between the 

CP on the turret surface and the shape of the virtual duct for each case, with the more 

highly-curved virtual ducts (i.e. smaller curvature ratio) producing lower flow speeds on 

the turret as expected. As such, it is clear that the Euler results are useful for making at 

least preliminary selections between different design configurations for the virtual duct. 
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5.2.1 Stratford Criterion for Prediction of Boundary-Layer Separation 

A method that has been developed to predict separation of turbulent boundary 

layers based on pressure distributions is known as Stratford’s criterion (Stratford 1959). 

This method was developed to predict boundary-layer separation for flow on a flat plate 

or airfoil. In the Stratford approach, a solution for the “inner” part of the boundary layer 

is found and compared to the “outer” part of the boundary layer to form the following 

condition for flow separation: 

  
   

    

  
      

   
   

      (5.3) 

which can be rearranged as: 

  
   

    

  

     
  
   

    
    (5.4) 

where Re represents the local Reynolds number based on the length of the surface  and  

the canonical pressure coefficient Cp’ is defined as  

 

Figure 5.4. Virtual duct wall shapes computed in Figure 5.3. The curvature 
ratios are, from left to right, 0.902, 1.26, and 1.88. 
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   (5.5) 

As such, boundary-layer separation is predicted using the Stratford criterion when the 

term on the left-hand side of Equation (5.4) is greater than or equal to 1.  

5.2.2 Example of Stratford Criterion Applied to Virtual Duct 

Prior to showing an example of the Stratford criterion applied to an Euler 

solution for the virtual duct, it should be reiterated that the Euler CFD cannot model the 

corner vortices that form in the corners of the virtual duct and that were investigated in 

Chapter 4. However, as shown in Figures 3.5, 3.7 and 3.8, the corner vortices only 

become important as the curvature of the virtual duct increases. As such, as the virtual-

duct becomes more highly-curved, the Euler/Stratford approach described here 

becomes less accurate, so that the Euler/Stratford approach can only be used with 

 

Figure 5.5. Stratford’s criterion applied to the lowest-curvature, R/B = 
1.88, pressure distributions shown in Figure 5.3. 
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confidence for the modeling of virtual ducts with relatively-low curvature (or high 

curvature ratio R/B). Note that this limitation is not particularly severe since, as shown 

in Chapter 4, the corner vortices produced by higher-curvature virtual ducts also 

produce in and of themselves optical aberrations on the outgoing beam, so that an 

objective of any optimization of the virtual duct should also be to use a virtual-duct 

shape with the minimum curvature possible. In summary, it must be remembered that 

for the Euler/Stratford approach described here, and the optimization process in which 

it is used (shown below), it is assumed that the virtual-duct curvature is relatively low.  

As an example of the ability of the Euler/Stratford approach to predict boundary-

layer separation in a low-curvature virtual duct, Figure 5.5 shows the Stratford criterion 

(i.e. the term on the left side of Equation (5.4)) computed for the pressure distribution 

of the low-curvature, R/B = 1.88, virtual duct shown in Figure 5.3. The figure shows that 

the Stratford method predicts boundary-layer separation at approximately 155° for this 

case. Although the virtual-duct shape for the result shown in Figure 5.5 is slightly 

different than the shapes tested experimentally in Chapter 3, the predicted separation 

location in Figure 5.5 is still very close to the location that was measured for the low-

curvature duct investigated in Chapter 3 (see Figure 3.5). This close comparison 

demonstrates the ability to predict boundary-layer separation with reasonable accuracy 

using the Euler/Stratford approach.  

In summary, using an Euler routine and the critical-Mach-number and Stratford 

approach, it is possible to obtain fast and relatively-accurate estimates of the 

susceptibility of a virtual-duct design to shock formation and boundary-layer separation. 
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This development of a fast analysis approach provides a substantial advantage for the 

DoE analyses and, as will be shown below, the design-optimization computations. As 

discussed above, the Euler/Stratford approach developed here will become less 

accurate as the curvature of the virtual duct increases and the importance of the corner 

vortices increases. However, the Euler solutions should still give reasonable results for 

low- to medium-curvature virtual-duct configurations and, as shown in Chapter 4, it is 

desirable in any case to use the lowest-curvature virtual duct possible in order to reduce 

the optical effect of the corner vortices. 

5.3 DoE Analysis of Virtual Duct 

For the virtual-duct geometry, the objective of the DoE analysis was to identify 

the important design parameters and their relative effect on the design objectives of 

minimizing the critical Mach number and delaying flow separation. As discussed in 

Section 4.5, a unique virtual-duct geometry can be defined by the location of 3 points, 

each having an x and y component for a total of 6 variables. In order to simplify the 

analysis, the height of the virtual-duct fence was not included as a design parameter; 

rather, the fence height was held constant for all cases at 0.9 times the turret diameter. 

Therefore, in order to use the 2k method with 6 variables, an analysis of 64 different 

combinations of the design variables would need to be completed. However, to reduce 

the number of required analyses, a fractional factorial design can be used. Fractional 

factorial designs assume that high-order interactions have a negligible effect on the 

performance of the design, and only use information on the low-order interactions by 
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completing only a fraction of the complete 2k parameter combinations (Montgomery 

2009). For the virtual-duct study, a 2k-2 method was used that allowed the DoE study to 

be completed with only 16 CFD runs.  

For the virtual-duct DoE study, the objective function was set as the location of 

separation. As such, the output of the DoE study (i.e. TABLE 5) shows the effect that 

each design parameter or combination of parameters has on the location of separation. 

Note that this emphasis on the location of separation appears to ignore the second 

objective of the virtual duct, which is to increase the critical Mach number on the turret. 

TABLE 5  

VARIABLES CHOSEN FOR EACH DOE RUN ALONG WITH THE CURVATURE RATIO, R/B. THE 

HIGHER VALUE FOR THE VARIABLE IS HIGHLIGHTED GREY. 

Run x1 y1 x2 y2 x3 y3 R/B Mcrit 
Separation 

Location 

1 0.25D 0.23D 0.47D 0.254D 0.765D 0.17D 2.71 0.679 134.7 

2 0.265D 0.23D 0.47D 0.254D 0.78D 0.17D 2.74 0.693 142.4 

3 0.25D 0.245D 0.47D 0.254D 0.78D 0.185D 4.09 0.755 151.6 

4 0.265D 0.245D 0.47D 0.254D 0.765D 0.185D 3.67 0.749 150.9 

5 0.25D 0.23D 0.485D 0.254D 0.78D 0.185D 3.22 0.704 158.8 

6 0.265D 0.23D 0.485D 0.254D 0.765D 0.185D 2.88 0.686 146.2 

7 0.25D 0.245D 0.485D 0.254D 0.765D 0.17D 3.16 0.750 159.2 

8 0.265D 0.245D 0.485D 0.254D 0.78D 0.17D 3.27 0.745 160.4 

9 0.25D 0.23D 0.47D 0.269D 0.765D 0.185D 2.20 0.688 142.8 

10 0.265D 0.23D 0.47D 0.269D 0.78D 0.185D 2.20 0.674 141.3 

11 0.25D 0.245D 0.47D 0.269D 0.78D 0.17D 2.45 0.735 146.9 

12 0.265D 0.245D 0.47D 0.269D 0.765D 0.17D 2.20 0.734 146.2 

13 0.25D 0.23D 0.485D 0.269D 0.78D 0.17D 2.11 0.688 142.6 

14 0.265D 0.23D 0.485D 0.269D 0.765D 0.17D 1.90 0.678 142.4 

15 0.25D 0.245D 0.485D 0.269D 0.765D 0.185D 2.52 0.732 147.8 

16 0.265D 0.245D 0.485D 0.269D 0.78D 0.185D 2.56 0.730 146.2 

 

Run x1 y1 x2 y2 x3 y3 

1 0.25 0.23 0.47 0.254 0.765 0.17 

2 0.265 0.23 0.47 0.254 0.78 0.17 

3 0.25 0.245 0.47 0.254 0.78 0.185 

4 0.265 0.245 0.47 0.254 0.765 0.185 
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However, it should be noted that for the virtual-duct optimization, the critical Mach-

number requirement was incorporated into the optimization as a design constraint, in 

the sense that potential virtual-duct shapes were given a poor evaluation if they did not 

produce a critical Mach number greater than a defined minimum value. As such, the 

approach of the virtual-duct DoE and optimization was to maximize the separation 

location under the condition that the critical Mach number was also greater than a 

minimum cutoff value. 

TABLE 5 shows the fence points for each DoE run for the virtual-duct 

configurations, along with the curvature ratio. Each of these fence shapes were analyzed 

using Euler CFD to find the pressure distribution. The CFD calculations for this study 

were performed using the Euler routine in the CFD code AVUS, and using a fully 

unstructured mesh. From the Euler data, the boundary-layer separation location was 

estimated using the Stratford criterion and is shown in TABLE 5, the critical Mach 

Number is also included as a reference although it had no affect on the DoE. The 

influence parameters and subsequent percent contributions of each design parameter 

or combination of parameters to the separation location were then computed using the 

same methods presented in Section 5.1.  

TABLE 6 shows the percent contribution of each influence parameter to the 

separation location. The percent contributions show three strong 1st-order interactions 

and one strong 2nd-order interaction. As shown in the table, the strong 1st-order 

interactions involve only the parameters y1, x2, and y2. At first glance, the fact that x3 and 

y3 do not produce strong 1st-order interactions appears to indicate that the location of 
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the virtual-duct outlet has little effect on how the virtual duct delays separation. This 

presumption is, however, incorrect, because the y3 parameter appears in the 2nd-order 

interaction y1y3 + x2y2 which produces a strong 15.76% contribution to the separation 

location.  This 2nd-order interaction, y1y3 + x2y2, is a combination of the inlet and outlet 

widths, y1y3, with the  location of the  virtual-duct center point, x2y2, and effectively 

reflects that the way in which the widths of the virtual-duct inlet and outlet (y1 and y3)  

affect the separation location also depends on the location of the virtual-duct center 

point. Specifically, the large y1y3 + x2y2 term shows that the center of the virtual duct 

must be well matched to the inlet and outlet widths of the virtual duct in order to 

produce a low pressure gradient and delayed boundary-layer separation. In this regard, 

referring to Figure 5.3, the R/B = 1.88 case had an effective location of the center point 

in the sense that it held the pressure inside the virtual duct fairly constant given the 

inlet and outlet width of the virtual duct. TABLE 6 also shows that the parameters x1 and 

x3 make individual contributions to the separation location that are well below 10%, and 

that any influence parameters that include these variables are also below 10%. As such, 

in order to increase the speed of the optimization, it is advantageous to leave out x1 and 

x3 thereby reducing the 6-variable optimization to a 4-variable optimization. Therefore, 

only parameters y1, x2, y2, and y3 are used in the optimization to be discussed below. 

 In summary, the DoE analysis for the virtual duct shows that an optimization 

routine that attempts to delay as far as possible the location of separation while 

maintaining a minimum critical Mach Number of 0.7 should be a 4-variable optimization 

problem involving the parameters y1, x2, y2, and y3. Appendix C shows an initial 
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evaluation of the virtual-duct design space, while Section 5.6 show a complete 

optimization study looking at maximizing the location of separation. 

5.4 Optimization Methods 

Design optimization is the process of finding the optimum solution to a given 

design problem. The method consists of defining a function that quantifies the success 

of a design and then attempting to find an optimum design that minimizes that function 

while applying any known constraints to the design (Tovar 2010). Several optimization 

TABLE 6 

DESIGN OF EXPERIMENTS FOR FAIRING, COMPARING THE DIFFERENCE BETWEEN THE 

HIGH AND LOW VALUES OF EACH PARAMETER BASED ON THE SEPARATION LOCATION. 

Influence 
Parameters 

Percent 
Contribution 

    0.58% 

    28.36% 

    18.49% 

    19.36% 

    3.43% 

    0.98% 

      +       0.18% 

      +       2.74% 

      +       0.00% 

      +       +       0.98% 

      +       5.06% 

      +       4.07% 

      +       15.76% 
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techniques have been developed to solve computationally-expensive problems. These 

techniques are briefly reviewed in Appendix B, and the selected approach for this 

investigation is described below.   

5.4.1 Optimization Approach Used in this Research, and Cases Investigated 

In the optimization approach employed in this research, CFD is used as the 

simulation model for optimization of the design object. As such, in the optimization 

flowchart shown in Figure B.1, each evaluation of the optimization function, f(x), 

requires a solution of a CFD model of the flow around the design object. This CFD 

solution typically also involves a re-generation of the computational mesh for the design 

object.  

Due to the intricacy of generating the computational mesh, it was found to be 

impractical to perform DES or even RANS computations as part of the optimization 

process. This is because the generation of a successful mesh for these types of solutions, 

particularly given the possible existence of sharp corners and interfaces in the virtual-

duct configuration, is generally a complex undertaking that is difficult to automate 

without human supervision. Furthermore, due to limitations in computational resources 

for the investigation, the long computational times involved in even RANS solutions was 

deemed beyond the scope of the investigation. As such, all optimizations shown in this 

research were performed using only an (“low fidelity”) Euler CFD solver.  Specifically, 

optimizations were performed for two cases. First, an optimization was performed to 

determine the optimum shape of a downstream fairing for the canonical hemispherical-
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turret-on-cylindrical-base configuration discussed in Section 5.1.1. In this case, due to 

the streamlined shape of the fairing, boundary-layer separations was assumed to be 

nonexistent (or unimportant) on the fairing so that the flow over the fairing is 

reasonably-well approximated by the Euler CFD simulation, especially in the upstream 

region of the fairing in the vicinity of the hemispherical turret. In addition to this fairing 

case, an optimization was also done for the shape of the virtual duct on a hemispherical 

turret. In this case, as shown in Chapter 4 and discussed previously in this chapter, a DES 

solution is required to accurately simulate the strength and effect of the streamwise 

vortices that form in the corners of the virtual duct. However, for low curvatures of the 

virtual duct, the corner vortices have a reduced effect and do not extend over much of 

the turret face; as such, the optimization is performed for only a low- to medium-

curvature virtual duct with the Stratford criterion used to estimate boundary-layer 

separation as described in Section 5.2.1. The details and results of these optimizations 

are described in the following sections. 

5.5 Fairing Optimization 

As shown in Rennie (2010), a simple method of increasing the critical Mach 

number and eliminating flow separation on a spherical turret is to add a downstream 

fairing. In this regard, a fairing could be used to improve the aero-optic performance of 

either an underwing pod such as described in Chapter 2, or a canonical hemispherical 

turret. As a first step towards developing an aero-optic mitigation strategy, an 

optimization was first performed on the fairing shape for a canonical hemispherical 
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turret. Note that the fairing shapes shown in Figure 2.1 were more or less randomly 

selected, and are in no way optimized.   

The optimization problem was formulated using the SQP method as described 

and presented in Appendix B. A basic design for the fairing, consisting of a cubic 

forebody that merges into an ogive tail, was assumed. With this basic design, the 

constraints on the variables consisted of setting x1 on the front of the turret, x2 

downstream of the turret, and y2 above the turret, see Figure 5.1. As the Design of 

Experiments screening study completed in Section 5.1.1 indicated, only x1, x2, and y2 

need to be included in the optimization routine while x3 can be held constant. As such, 

x3 was set at a constant value of 6.5D, which was judged sufficiently large to maintain 

the ogive-tail shape during the optimization. For this fairing-optimization study, it was 

also assumed that essentially any fairing would either eliminate or delay flow separation 

to a point at which the separated flow would not enter the field of regard of the optical 

system mounted in the spherical turret. As such, the optimization was performed only 

on the critical Mach number, which was formulated into the objective function.  The 

overall problem in standard form was therefore: 

              

s.t.                  ,        

            , and 

             . 

(5.6) 
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As stated before, an SQP algorithm was used to converge to an optimal design. 

The optimization began with an initial guess, which was chosen as a location near the 

middle of the feasible region:  x1 = 0.29D, x2 = 1.8D, and y2 = 0.9D (x3 is constant at 

6.5D). Based on these values, the gradient of the objective function,       , was found 

by perturbing each variable by 10-4D and computing the Euler solution for each 

parameter perturbation. The Hessian,       , was then computed using the Davidon-

Fletcher-Powell (DFP) formula (Davidon 1991, Fletcher 1963). Equation (5.6) was 

simplified into a quadratic programming problem that was solved by the inherent 

Matlab function, quadprog. Once the quadratic programming problem was solved, the 

Wolfe condition, Equation (D.4), was used to decide if the new solution is better than 

 

Figure 5.6. Comparison of 1st guess fairing shape to the optimal solution. 
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the previous solution. If it is not better, the step length was halved until a better 

solution was found. Once a better solution is found, the process was repeated by finding 

the derivative of the objective function and stepping through the optimization routine 

again. If a better solution is not found, then the optimization routine was assumed to 

have converged to an optimal shape and the program exits.   

For this configuration an optimal solution was found in 7 iterations, consisting of 

41 function evaluations. The first guess solution, pictured in Figure 5.6 with the final 

solution, had a critical Mach number of 0.723 while the final solution had a critical Mach 

number of 0.770. Although the change seems minimal, the increase in critical Mach 

number is significant and the optimal solution is able to delay the formation of shock 

waves at higher speeds than the initial guess. It should be noted that the optimization 

routine only looked at the minimum pressure in the region around the turret (0.0 < x/D 

< 1.25) and assumed that any shocks that form downstream on the fairing would not 

affect a beam leaving the turret. When comparing to Chapter 2 where a critical Mach 

number of 0.8 was found, it should be noted that the current model is for a turret that 

includes an extra D/3 base while the Mcrit = 0.8 result from Chapter 2 was for a 

symmetric, streamlined pod.  Since flow speeds over the top of a turret with D/3 base 

are slightly faster than at equivalent locations on a pod, it is more difficult to achieve 

higher Mcrit for the turret on D/3 base configuration.   
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To get a better understanding for the results of each iteration and function call, 

Figure 5.7  shows the critical Mach number of each function call and iteration 

respectively. Figure 5.7 , Left, shows the function calls, defined as anytime an Euler run 

is completed for a fairing shape. Showing the number of function calls gives an idea of 

the length of an optimization routine, since each Euler run takes ~3 hours on 48 

processors, multiplying this by the total function calls, 41, shows that it took 5.1 days to 

reach an optimal solution. It takes a total of 4 functional calls to compute a derivative 

(i.e. a 3-variable optimization needs 4 data points to compute the derivative for each 

variable), then if the Wolfe condition, Equation (B.1), is not satisfied, based on the initial 

step length, , subsequent function calls are completed with smaller step lengths until a 

more optimal point is found. Figure 5.7 , Right, shows each iteration which is defined by 

each time the optimization routine finds a more optimal point. In this case it found 6 

points with increasing optimality, until it finally converged on the optimal solution. 

 

Figure 5.7 Critical Mach number for each function call (left) and iteration 
(right) for the fairing optimization. The optimal solution, found on 

function call 35 and iteration 7, is denoted by the diamond. 
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The pressure distribution for the optimized fairing is shown in Figure 5.8, and 

gives some insight into how the optimization process produces an optimum shape. 

Specifically, it is apparent that, in order to minimize the flow speed over the fairing, no 

point on the fairing should have a faster flow speed than another point on the fairing 

(otherwise the fairing shape could be adjusted slightly to reduce the speed at the high-

speed point thereby resulting in a lower Mcrit even if this adjustment resulted in an 

increase in the flow speed at another point on the fairing). In this regard, comparing the 

1st iteration to the final iteration in Figure 5.8 shows that the optimization procedure 

has produced a more equal pressure distribution (and flow speeds) over the fairing. The 

local minimum in the Cp for the optimized distribution at x/D = 0.29 corresponds to the 

curvature of the hemispherical turret just upstream of the interface between the turret 

and the downstream fairing. By optimizing the location of this interface, and the local 

slope of the fairing at this location, the optimization procedure has maximized the Mcrit 

for the fairing. Note that the pressure distribution in Figure 5.8 shows that the Cp at x/D 

 

Figure 5.8. Pressure distribution over the front portion of the turret with 
fairing (left) and over the full fairing (right). 
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= 0.9 appears to be slightly lower than at x/D = 0.29; this difference shows that the 

fairing shape still could have been improved slightly, except that the optimization 

procedure may have been unable to do this possibly due to the grid resolution of the 

CFD models.   

5.6 Virtual Duct Optimization 

With the success of the fairing optimization, an optimization was also performed 

for the flow over a turret with a virtual duct. A preliminary investigation of the design 

space is presented in Appendix C that gives a good understanding of how different fence 

shapes affect the adverse pressure gradient. For the virtual-duct optimization, the 

critical Mach number was set as a constraint while the optimization was used to 

maximize the downstream location of the flow separation. The location of separation 

was defined by the elevation angle, , of the point on the turret at which the Stratford 

criterion, Equation (5.4), became greater than one: 

        
  
   

    

  

     
  
   

    
    

(5.7) 

 

As such, the objective function for the optimization was: 

       (5.8) 

where  is defined as the elevation angle when the Stratford criterion is first satisfied. 

As shown in the Design of Experiments study, Section 5.2, only the variables y1, 

x2, y2, and y3 have a strong effect on the performance of the virtual duct; as such, x1 and 

x3 were kept constant for the optimization, specifically, values of x1= 0.25D and 
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x3=0.765D were selected; these points were selected arbitrarily, however, they  are 

fairly close to the locations of the inlet and outlet to the virtual duct tested 

experimentally in Chapter 3.  

 The variables of interest, y1, x2, y2, and y3, were constrained such that x2, is 

located downstream of x1 and upstream of t x3: 

            , 

               
(5.9) 

Furthermore, the y2 location must be further from the turret centerline than y1 and y3 in 

order for the virtual-duct fences to have the correct diffusing and contracting regions: 

             , 

             . 
(5.10) 

 

Figure 5.9. The location of separation for each function call (left) and 
iteration (right) for the virtual duct optimization. The optimal solution is 

found on function call 27 and iteration 5. 
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Another constraint on the virtual-duct fences is that they cannot be located too close to 

the centerline or else they would block the outgoing beam; therefore the minimum 

value must be greater than 0.17: 

             for i = 1, 2, and 3, (5.11) 

and that each fence point must be located on the turret: 

              
        , for i = 1, 2, and 3. (5.12) 

A further constraint was placed on the curvature ratio of the virtual duct, R/B, based on 

the limitations of the Euler/Stratford approach discussed above. Specifically, the radius 

of curvature of the virtual duct was limited to values greater than 1.2, which was judged 

to be sufficiently low (based on the results of Section 5.2) that corner vortices formed in 

the virtual duct would not significantly influence the flow in the duct. Finally, as stated 

above, the critical Mach number was constrained to be greater than 0.7. Since the value 

for the critical Mach number is not known until after a function call is completed, a 

penalizing method is used to account for this constraint. If a function produces a critical 

Mach number below 0.7, the separation location, i.e. objective function, is moved 

forward:  

                     for MCRIT < 0.7 

      for MCRIT > 0.7 
(5.13) 

In summary, a statement of the overall optimization problem in standard form is: 

      

s.t.   MCRIT > 0.7 
(5.14) 
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            , 

            , 

             , 

             , 

          
    

        , for i = 1, 2, and 3, and 

             for i = 1, 2, and 3. 

The optimization problem described in Equation (5.14) was solved using the 

Euler routines contained in AVUS. The initial parameter values were arbitrarily selected 

to be (x1,y1) = (0.25D,0.23D), (x2,y2) = (0.45D,0.30D), and (x3,y3) = (0.765D, 0.19D). These 

initial parameters gave a virtual duct shape that had a critical Mach number of 0.728 

and a location for separation of 146.4°. Note that the value of 146.4° is similar to the 

separation location found for the high curvature-ratio case shown in Figure 5.5.  

The optimization problem converged to an optimal solution with a critical Mach 

number of 0.75 and a location for separation at an elevation angle of 162.4°. The 

optimized solution was achieved after 32 function calls and 5 iterations, which required 

8 days using 72 processors.  The value of the location of separation for each iteration 

and function call is shown in Figure 5.9. The non-circled points are the function calls that 

consist of 5 function calls to compute the derivative and the associated calls for each 

iteration while the optimization routine “hunts” for a better location in which to move 

the design. Once the better location is found, the next iteration begins with the circled 

points. Similar to the fairing, large increases in the location of separation appear in the 
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early iterations, while the fine tuning occurs in the later iterations. Note that, although 

the separation of 146.4° for the initial guess is a significant improvement on the 120° 

separation location of a canonical turret, Figure 5.9 shows that this initial guess is 

nowhere near optimum. As such, a designer may have been tempted to use this first 

guess and settle on a separation location of 146.4°; however, by performing an 

optimization routine, a superior virtual-duct shape is obtained with a separation 

location of nearly 162.4°.  

A comparison of the virtual-duct shapes for the initial and final optimization 

iterations is shown in Figure 5.10. The figure shows that the optimization process has 

moved the location of the widest point on the virtual duct (point 2 in Figure 5.2) slightly 

downstream. However, perhaps the most interesting detail of Figure 5.10 is that the 

fence shapes for the initial and final iterations are actually relatively similar and that the 

 

Figure 5.10. Virtual duct shape for the 1st and last iteration. 
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main effect of the optimization has been to move the virtual-duct fences outward on 

the turret. Although the most likely effect of this outward shift of the virtual-duct fences 

would be to entrain more flow into the virtual duct, a designer would probably not find 

this improved design except by chance due to the difficulty in developing an intuitive 

feel for how the virtual duct affects the flow over the curved surface of the turret. As 

such, the virtual-duct shapes in Figure 5.10 further demonstrate the advantage 

conferred by the optimization process. 

Figure 5.11, left, shows a comparison of the pressure distribution for the first 

and last iterations. Significantly, the optimized solution has moved the minimum 

pressure location on the turret almost 40° further downstream. This downstream 

shifting of the minimum pressure location also moves the adverse pressure gradient 

farther downstream and results in a delay of boundary-layer separation as shown on the 

right side of Figure 5.11.  The plot of the Stratford condition in Figure 5.11, right, also 

 

Figure 5.11. The pressure distribution inside of the virtual duct for the 
initial guess and the optimized fence. 
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indicates that the 145° location, coinciding with the outlet of the virtual duct, is a critical 

region for separation. This result highlights the effect that the outlet of the virtual duct 

has on the location of separation, and suggests that the separation location might be 

delayed still further by moving the outlet of the virtual duct even further rearward.  

The final location of (x1,y1) = (0.25D,0.32D), (x2,y2) = (0.485D, 0.37D), and (x3,y3) = 

(0.765D, 0.25D) corresponds to a curvature ratio of 1.22. For this curvature ratio, a plot 

of the Strehl Ratio as a function of freestream Mach number is shown in Figure 5.12. 

The Strehl ratios shown in the figure were calculated using the same procedure 

described in Section 4.7. Note, however, that due to the optimized fence locations being 

farther away from the turret centerline (i.e., the optimized fence locations are 

 

Figure 5.12. Strehl Ratio as function of Mach number for the curvature 
ratio, 1.22, of the optimized virtual duct shape. 
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approximately 0.08D wider than the beam aperture), the corner vortices from the 

fences would also be located farther from the optical aperture. Specifically, the 

estimated location of the corner vortices is adjusted to be roughly 0.05 AD to the side of 

the edge of the aperture, and this location for the corner vortices was used to compute 

Figure 5.12. This adjustment was estimated based on the fence outlet, y3, being 0.25D 

from the centerline instead of 0.19D used in Chapter 4.  As such, the fact that the 

optimization shows that wider virtual-duct fences result in better performance is a 

particularly important result since it also means that the corner vortices from the fences 

would be located farther from the optical aperture and hence would have a reduced 

effect on the performance of the virtual duct.  Due to the wider virtual duct, the 

computed Strehl Ratios in Figure 5.12 are over 0.45 up to   = 0.8 and over 0.6 up to 

  = 0.6.  

5.7 Conclusions 

The Design of Experiments study helped to minimize the variables needed in the 

optimization routines. Although some assumptions were made, the final results proved 

to be reasonable. With the understanding of the important variables, an optimization of 

the fairing and the virtual duct was completed. The fairing optimization converged on a 

shape that increased the critical Mach number of a canonical hemispherical turret with 

D/3 base to 0.77, which is a significant improvement on the Mcrit of 0.55 for a turret 

without a fairing.  For the virtual duct, the optimization process also produced a 

superior design that moved the point of minimum pressure/maximum flow speed 
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farther downstream, thereby delaying the start of the adverse pressure gradient on the 

turret and hence delaying boundary-layer separation. This optimized virtual-duct design 

moved the separation location downstream from an elevation angle 120° for a canonical 

turret to 162.4° for a turret with a virtual duct, while also increasing the critical Mach 

number from 0.55 for a turret to 0.75 for a turret with a virtual duct. Significantly, the 

virtual-duct optimization also showed that better performance is achieved if the fences 

of the virtual duct are moved farther out on the turret. This wider spacing of the duct 

fences has the added benefit of also moving the corner vortices farther out and hence 

farther away from the optical aperture, thereby reducing the aberrating effect of the 

vortices themselves. 
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CHAPTER 6:   

SUMMARY AND RECOMMENDATIONS  

 This dissertation has described an investigation into the “virtual duct” concept, 

in which fences are mounted on a spherical turret with the purpose of mitigating or 

eliminating aero-optic aberrations by increasing the critical Mach number and delaying 

boundary-layer separation in the vicinity of the optical aperture. The following are the 

major findings of the investigation:   

 The ability of the virtual duct to delay boundary layer separation was successfully 

demonstrated experimentally, as described in Chapter 3. Depending on the 

curvature of the duct, the flow visualization studies showed that the flow 

remained attached up to an elevation angle of 160°. These experiments were 

conducted using a turret with ReD greater than the critical ReD for a sphere; so 

that a turbulent boundary layer existed on the turret. 

 Streamwise vortices were experimentally shown to form in the corners of the 

virtual duct. A CFD study was performed to develop a physics-based explanation 

for the cause of the vortices, based on previous research into flow in river 

channels, as well as a model to estimate the strength of the corner vortices as a 

function of the shape of the virtual duct. 
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 A simple method was developed based on previous work by Porter (2011b) to 

estimate the optical effect of the streamwise corner vortices. The effect of the 

corner vortices on the farfield irradiance pattern of an outgoing beam was 

computed using the Fraunhoffer Equation, Equation (1.2) as a function of vortex 

parameters. 

 A low-fidelity method for predicting boundary layer separation on a turret with a 

virtual duct was developed that uses only the Euler equations along with the 

Stratford criterion, Equation (5.4). This method gave a reasonable comparison to 

experimental results for comparable geometries. 

 Optimization methods for a fairing and virtual duct were developed and 

successfully demonstrated in Chapter 5. These optimization studies showed that 

adding a faring to a turret can raise Mcrit to at least 0.77. The virtual-duct 

optimization showed that a virtual duct can be developed with Mcrit of at least 

0.75 that delays separation to 162.4°. The virtual-duct optimization achieved this  

increase in performance while constraining the virtual-duct curvature to a 

sufficiently-low value that the corner vortices produced in the virtual duct would 

remain relatively weak. The virtual-duct optimization showed that better 

performance is achieved if the fences of the virtual duct are moved farther out 

on the turret. This wider spacing of the duct fences has the added benefit of also 

moving the corner vortices farther out and hence farther away from the optical 

aperture, thereby reducing the aberrating effect of the vortices themselves. 

The following recommendations are made for future work: 
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 The optimization study described in this research was performed for only a single 

location of the inlet and outlet of the virtual duct. This was done because the 

DoE study indicated that the virtual-duct inlet and outlet locations, x1 and x3, had 

only a minor effect on the performance of the virtual duct with regards to 

delaying boundary-layer separation. However, there is some evidence that the 

virtual-duct outlet can have a substantial effect on the boundary-layer 

separation location as evidenced by the rapid increase in the Stratford criterion 

near the virtual-duct outlet as shown in Figure 5.5. As such, additional 

optimization studies could be performed using different inlet and outlet 

locations of the virtual duct to more fully evaluate the effect of x1 and x3 on the 

performance of the virtual duct. For these studies, the outlet of the virtual duct 

could be moved farther downstream, or even off the rear of the turret.  

 The optimizations described in this investigation were completed using low-

fidelity Euler equations combined with a pressure-based method of predicting 

boundary-layer separation. This approach was implemented primarily due to 

limitations in the available computational resources. As such, further 

investigations could be performed using more powerful CFD resources. 

Specifically, the fairing optimization would benefit from CFD with finer resolution 

gridding along with using a structured grid to better resolve the flow speeds near 

the surface of the fairing. The virtual-duct optimization could also be performed 

using a true multi-fidelity optimization, described in Appendix B, in which the 

Euler/Stratford approach is used as a low-fidelity model and a high-fidelity DES 
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CFD solution is  computed periodically to correct the low-fidelity solutions. 

Furthermore, work could be done to eliminate the need for human interaction in 

the gridding of the high fidelity solutions to obtain a fully-automated 

optimization procedure. 
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APPENDIX A:   

EXPERIMENTAL CORRECTIONS 

A.1 Blockage Correction 

To correct for the blockage in the wind tunnel a solid blockage correction 

equation was taken from Maskell (1963). Taking CP equations for the measured and 

corrected values, 

       
  
  
 
 

 
(A.1) 

 

and 

       
  
  
 
 

  (A.2) 

and setting the mass flow into the control volume, before the experimental model is 

introduced, equal to the mass flow out of the control volume, at the pod’s maximum 

diameter of 0.3048 m (12 inches), 

                          . (A.3) 

Substituting Equations (A.1) and (A.2) into Equation (A.3), and setting       , the 

equation for the corrected CPc is found to be 

               
          

   
 
 

   (A.4) 
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This equation only corrects for solid blockage, corrections due to buoyancy and 

wake blockage have been neglected. Buoyancy blockage is neglected because the model 

is placed close to the inlet of the test section; therefore the boundary layer has had little 

growth by the time it reaches the turret ball. Wake blockage is neglected since the 

model is aerodynamic and there is little separation on the body.  

 

To verify that the correction equation is correct, pressure measurements from 

the three foot by three foot test section are compared to that of the two foot by two 

foot test section. Since each run was done using the same model and at the same flow 

speed, the result converges to a similar solution as shown in Figure A.1.  Looking at the 

4th and 5th points, they do not follow the trend of the data. This is due to the boundary 

layer trip that was placed in this region to make sure the flow is turbulent over the 

sphere. These experimentally found pressure distributions are shown for a 20° lookback 

 

Figure A.1. Pressure distribution for 20° lookback angle with a regular 
fence height showing that the blockage correction converges to a similar 

solution for both wind tunnels (Crahan 2011).  
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configuration with a regular fence height. These tests were conducted in a slightly 

different configuration and are presented only to prove the convergence of the 

blockage correction equation. The experimental data presented in Chapter 2 is for a 

corrected configuration that has the stagnation point on the nose of the turret ball.  

A.2 Pressure Calibration 

The voltage output from the differential pressure transducer is used in 

combination with a scanivalve to calibrate to transducer to calculate the coefficient of 

pressure at each tap location. To complete this a scanivalve, a pressure transducer, and 

a pitot static probe (PSP) are used following the set-up shown in Figure A.2. The 

 

Figure A.2. Overview of pressure measurement based on the pressure 
taps on the model and the pressure values measured with a pitot static 

probe. 
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scanivalve is set-up so that the first port is connected to the static tap on the PSP, then 

each model tap is connected to the scanivalve in order. Once all model taps are 

connected, the static tap from the PSP is connected again followed by the total pressure 

tab. The output of the Scanivalve is connected to one side of the differential pressure 

transducer and compared to the total pressure from the PSP. As such, the output from 

the pressure transducer has N+3, where N is the number of model taps, voltage 

readings. To calibrate the voltage reading to a pressure coefficient, the voltage reading 

is turned into a pressure value by: 

                (A.5) 

where  and are arbitrary calibration constants. Therefore the pressure 

measurements comparing the total pressure to the model taps is: 

                              (A.6) 

where N represents the model tap number. The pressure measurements comparing the 

total pressure from the PSP to the static pressure from the PSP is: 

                                         (A.7) 

The pressure measurements comparing the total pressure from the PSP to the total 

pressure from the PSP is: 

                                       (A.8) 

This difference in this last value is the total pressure through the scanivalve compared to 

the total pressure connected directly to the transducer. 

 To calculate the pressure coefficient, the readings are set-up as: 
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 (A.9) 

and substituting Equations (A.6)-(A.8) into Equation (A.9): 

   
                                    

                                         
  (A.10) 

Rearranging and canceling out the arbitrary calibration constants simplifies the CP to be 

   
                        
                            

 
          
              

  (A.11) 

which is equal to the pressure coefficient (Schlicting 1979): 

   
    
 
       

  (A.12) 

 

Figure A.3. Data in Figure 3.6 showing the 95% confidence intervals. 
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A.3 95% Confidence Intervals 

In order to understand the repeatability of the pressure measurements, 95% 

confidence interval bars are shown for Figure 3.6 where the experimental pressure data 

is shown for a low-curvature virtual-duct compared to a turret without a virtual duct. 

The error bar measurements are calculated using  

    
 

  
 (A.13) 

where z is 1.96 for a 95% confidence interval calculation. Each average tap 

measurement, i.e. values shown Figure 3.6, consists of the average of 10 different 

measurements. As such the sample size, n, is 10 and the standard deviation is taken 

from these 10 values. It should be noted that each different measurement actually 

consists of 2050 samples over 0.5 seconds that are averaged while the experiment is 

taking place. Figure A.3 shows the error bars for the 2 different wind tunnel tests shown 

in Figure 3.6. These error bars are relatively small in that they do not overlap in the 

regions where the pressure is increasing and decreasing.  
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APPENDIX B:   

OVERVIEW OF OPTIMIZATION 

Optimization methods are categorized into several different types of problems 

beginning with the most basic single-variable optimization up to unconstrained and 

constrained multivariable optimization and even multi-objective optimization. Different 

types of global optimization techniques involve integer programming and genetic 

algorithms.  

Most gradient-based optimization methods have a common structure. Each 

method involves an initial design, x0, a search direction, d0, and a step size, α0. This way 

the next design location can be found by solving: 

              (B.1) 

where k represents the current iteration and k+1 is the next iteration. Gradient-based 

numerical methods are characterized by the different ways they determine the search 

direction, dk (Tovar 2010). The step size, αk, is found by solving a single-variable 

optimization problem. Methods for using the search direction include the steepest 

descent method (Cauchy 1847), conjugate gradient methods, and, if the Hessian matrix 

can be computed, Newton methods. Even if the Hessian cannot be found, the Davidon-

Fletcher-Powell (DFP) formula has been developed to estimate the Hessian matrix 

(Davidon 1991, Fletcher 1963). A trust region method has also been developed that 
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does not use the step size, instead it uses only the search direction, dk, and limits the 

solution to a certain region.  

 Constraints are added to the optimization problem to restrict the objective 

function to certain conditions. The standard form of an optimization problem is stated 

as: 

   
 
     

subject to             

                    

(B.2) 

where f(x) is the objective function, g(x) is the inequality constraint, and h(x) is the 

equality constraint of the objective function.  

For this investigation, a Sequential Quadratic Programming (SQP) algorithm was 

selected. SQP methods generate design improvements by solving quadratic 

programming (QP) subproblems. This approach can be used both in line search or trust-

region frameworks (Nocedal 2006). SQP methods deliver a high order of convergence 

and are suitable for solving problems with significant nonlinearities (Tovar 2010).   

The SQP method begins by formulating the non-linear problem in quadratic 

form. This is done by computing the derivative,       
 and the Hessian,        

  , of 

the objective function for each variable for the current point xk. Then a new 

optimization problem is solved to find the search direction, dk. The constraints are also 

put in a standard quadratic form by taking their values and derivatives at xk. The new 

optimization problem to find the search direction, dk, for the current point, xk, in 

standard form is: 
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s.t.                  
      

                         
      

(B.3) 

where “s.t.” stands for “subject to.” To decide the search distance, the Wolfe Condition 

(Wolfe 1969) is used. The Wolfe Condition forces a reduction in f(xk) that is proportional 

to both  the step length, k, and the directional derivative       
    where dk is found 

from solving the optimization problem, Equation (B.3). In order for a new point to be 

considered more optimal it must produce a value of the optimization function that is 

 

Figure B.1. Variable fidelity framework flowchart (Gano 2004). 
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less than the current value plus the directional derivative multiplied by a constant: 

                           
      (B.4)  

The value of c1 is recommended to be very small, in the present study, it was set to 10-4 

(Nocedel 2006). The step size, k, was set to 0.5k so that the step size is constantly 

decreasing with each iteration. Once the equality in Equation (B.4) is satisfied the new 

point is: 

               (D.5)  

and the process is repeated until an optimal design is found. 

B.1 Variable-Fidelity Optimization 

 The optimization process can involve a large number of function calls to 

converge to a solution, therefore to converge to an optimum more rapidly; a variable 

fidelity method can be used. Variable-fidelity methods have been developed to solve 

optimization problems that involve simulations with extreme computational expense. A 

higher fidelity model is one that contains physics or details that are not accounted for in 

a lower fidelity model (Gano 2004). As an example, for the optimization of the virtual 

duct, a low-fidelity model might use the Euler equations while a higher-fidelity model 

might use DES CFD. In this case, the optimization can be performed more rapidly with 

the low-fidelity function calls which are periodically improved using a more 

computationally-expensive higher-fidelity simulation. Figure B.1 shows a sample 

flowchart of a variable-fidelity optimization routine.  
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To perform this variable-fidelity optimization, the initial values and derivatives 

are calculated at the initial point, xk, using the high- and low-fidelity simulations. Then a 

scaling model is constructed to ensure matching between the different fidelity models 

and an optimization iteration is completed using the low fidelity model. Once a more 

optimal location is found, the new point, xk+1, is evaluated for its value and its 

derivatives to construct a new scaling model. This process is repeated until an optimum 

location is found.  

B.2 Sequential Quadratic Programming Code 

The code used to perform the SQP algorithm for the optimization routine is 

shown below with comments. 

clc 
clear all 
close all 
 
Hessian = 'dfp'; 
iter(1).x(1,:)=[0.229 0.45 0.299 0.189]; %Initial Guess 
 
delX = 10^-4; 
i = 1; 
errorOut = 1; 
[R C] = size(iter(1).x(1,:)); 
qq = 1; 
q = 1; 
gamma = 10^-4; 
iter(i).f(1) = objective_F(iter(i).x(1,:),delX,i); %Initial computation of objective function 
while errorOut > 10^-10  
     %Compute the derivative of each variable using forward Euler 

    for jj = 1:C      
        iter(i).x(jj+1,:) = iter(i).x(1,:); 
        iter(i).x(jj+1,jj) = iter(i).x(1,jj) + delX; 
  iter(i).f(jj+1) = objective_F(iter(i).x(jj+1,:),delX,i); 
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    end 
    iter(i).dF = objective_der_InputF(iter(i).f,delX)'; 
     
   %Compute the Hessian using the previously specified formula 
    if strcmp(Hessian,'exact') 
        iter(i).ddF = DDF(iter(i).x(1,:),delX); 
    elseif strcmp(Hessian,'dfp') 
        if i == 1 
            iter(i).ddF = eye(C); 
            iter(i).ddFInv = eye(C); 
        else 
            iter(i).y = iter(i).dF - iter(i-1).dF; 
            iter(i).yT = transpose(iter(i).y); 
            iter(i).sT = iter(i).x(1,:) - iter(i-1).x(1,:); 
            iter(i).s = transpose(iter(i).sT); 
            iter(i).ddFInv = iter(i-1).ddFInv - ((iter(i-1).ddFInv * iter(i).y * iter(i).yT * 

iter(i-1).ddFInv)/(iter(i).yT * iter(i-1).ddFInv * iter(i).y)) + ((iter(i).s * iter(i).sT)/(iter(i).sT * 
iter(i).y)); 

            iter(i).ddF = inv(iter(i).ddFInv); 
        end 
    elseif strcmp(Hessian,'bfgs') 
        if i == 1 
            iter(i).ddF = eye(C); 
            iter(i).ddFInv = eye(C); 
        else 
            iter(i).y = iter(i).dF - iter(i-1).dF; 
            iter(i).yT = transpose(iter(i).y); 
            iter(i).sT = iter(i).x(1,:) - iter(i-1).x(1,:); 
            iter(i).s = transpose(iter(i).sT); 
            iter(i).ddFInv = iter(i-1).ddFInv - (((iter(i).s * iter(i).yT * iter(i-1).ddFInv) + 

(iter(i-1).ddFInv * iter(i).y * iter(i).sT))/(iter(i).sT * iter(i).y)) + (1 + ((iter(i).yT * iter(i-
1).ddFInv * iter(i).y)/(iter(i).sT * iter(i).y)))*((iter(i).s * iter(i).sT)/(iter(i).sT * iter(i).y)); 

            iter(i).ddF = inv(iter(i).ddFInv); 
        end 
    end 
    iter(i).g = Constraints_H(iter(i).x(1,:),delX) 
    iter(i).dg = Constraints_DH(iter(i).x(1,:),delX) 
  
  %Solve the quadratic programming problem for the quadratic approximation of 

the objective function 
    options = optimset('Algorithm','active-set') 
    iter(i).dQ = quadprog(iter(i).ddF,iter(i).dF,iter(i).dg,-iter(i).g,[],[],[-20 -20 -

20],[20 20 20],transpose(iter(i).x(1,:)),options); 
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  %Check if new location is more optimal using Wolfe Condition 
    q = i; 
    iter(i).dQNorm = 0; 
    for j = 1:C 
        iter(i).dQNorm = (iter(i).dQ(j))^2 + iter(i).dQNorm; 
    end 
    iter(i).WolfeRHS = iter(i).f(1) - gamma*(0.5^q)*sqrt(iter(i).dQNorm); 
     
    WolfeCond = 1; 
    while WolfeCond == 1 && q < 10; 
        for j = 1:C 
            iter(i).WolfeTest(j) = iter(i).x(1,j) + (0.5^q)*iter(i).dQ(j); 
        end 
        %Compute at new location until Wolfe Condition is satisfied 
        iter(i).WolfeLHS(q) = objective_F(iter(i).WolfeTest,delX,i) 
        if iter(i).WolfeLHS(q) < iter(i).WolfeRHS 
            WolfeCond = 0 
        else 
            q = q+1 
        end 
    end 
 
    if q == 10 

               %If not satisfy Wolfe Condition, optimum is found! 
  [iter(i+1).f(1) ind] = min(iter(i).f); 
  iter(i+1).x(1,:) = iter(i).x(ind,:);         

    else 
 %If Satisfy Wolfe Condition, Set new guess and iterate 
         iter(i+1).f(1) = iter(i).WolfeLHS(q); 
         iter(i+1).x(1,:) = iter(i).WolfeTest; 
    end 
 
    error = 0; 
     
    for j = 1:C 
        error = (iter(i+1).x(1,j) - iter(i).x(1,j))^2 + error; 
    end 
     
    qq = qq + 1; 
    i = i + 1; 
    x1x2(i,:) = iter(i).x(1,:); 
    errorVec(i-1) = error; 
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    errorOut = error 
end 
 
qq 
fVal = iter(i-1).f 
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APPENDIX C:   

PRELIMINARY STUDY OF VIRTUAL DUCT 

C.1 Investigation of the Design Space 

Prior to the optimization, an initial study was completed  to understand the 

virtual duct design space for flows around a hemispherical-turret-on-cylindrical-base 

configuration, where the two main causes of optical aberrations are shock waves and 

flow separation (Crahan 2010). As discussed above, shock formation on the turret can 

be avoided by keeping the minimum CP0 on the turret as large as possible. Since the 

adverse pressure gradient is a major factor in determining boundary-layer separation, a 

closer look into the adverse pressure gradient was completed as a preliminary study to 

understand how different fence shapes affect separation. The region of interest for the 

adverse pressure gradient was chosen to begin at x/D = 0.4 (elevation angle of 78°), and 

to extend sufficiently far downstream to enable a maximum lookback angle of 40o. For a 

typical turret design in which the aperture is 1/3rd the diameter of the turret, Figure C.1 

shows that this criterion means that the boundary layer must remain attached up to x/D 

= 0.91 (elevation angle of 145°).  It should be noted that the maximum lookback angle of 

40o was chosen arbitrarily; however, since flow separation on a spherical turret normally 

occurs at only 30o past vertical, Figure C.1 shows that minimizing the adverse pressure 
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gradient in an attempt to prevent boundary-layer separation over the range x/D = 0.4 to 

0.91 would represent a significant improvement over the canonical hemisphere-on-

cylinder turret case. 

Based on the above discussion, the pressure gradient is defined as 
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where CP is the pressure coefficient. To deal with CFD data at discrete points, xi /D, the 

adverse pressure gradient was re-written as 
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C.2 Design Variables 

 The objective of the initial work was to understand how the shape of the fence 

affects the pressure gradient on the rear of the turret by trying different combinations 

 

Figure C.1. Side view of turret showing lookback angle of 40° (Crahan 2010). 
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for the locations of the points 1, 2, and 3 shown in Figure 4.10. From the underwing pod 

study, it is known that higher fence heights increase the critical Mach number; however, 

to simplify the CFD computations for this study, the height was set to a constant at 1.2D. 

In summary, six design variables were used: x1, y1, x2, y2, x3, and y3. 

C.3 Constraints 

The main constraint on the system is the lower limit on the pressure coefficient; 

that is, to obtain a critical Mach number of 0.8 the minimum CP0 must be no less than     

-0.24 (as shown in Figure 1.5). However, to ensure that at least some turret 

configurations would meet the constraint, for this investigation, the constraint on 

minimum CP0 was relaxed to -0.5 (i.e. Mcrit = 0.7). Geometric constraints on the reference 

points of the fence were also imposed to avoid fence shapes that would lie on the 

optical aperture of the turret. For this constraint, all points on the fence must have a y-

coordinate that is greater than or equal to 0.17D away from the centerline of the pod 

(again, assuming a typical turret configuration with an aperture diameter that is 1/3rd 

the diameter of the turret). Other constraints included an upper limit on the y-

coordinates of the fence of 0.45D, and x-coordinates between 0 and D. Finally, the fence 

thickness was set to 0.03D. In summary, these constraints can be formulated as: 

             
         for i = 1, 2, 3, (C.3) 

           for i = 1, 2, 3, and (C.4) 

                for i = 1, 2, 3. (C.5) 
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A further constraint on the design is to make sure that no point overlaps or gets too 

close to another point, e.g. point 2 must be located further downstream than point 1. 

This preliminary study did not restrict the curvature ratio of the fence, discussed in the 

Chapter 4, in order to look at the complete design space. In the optimization routine, 

described in the Chapter 5, a restriction was placed on the curvature ratio. 

C.4 Methodology for Design Optimization 

A flow chart of the function call is shown in Figure C.2. In general, the three 

points from Figure 5.2 that define the fence are selected and used to generate the fence 

coordinates. Once the fence coordinates are determined, the CFD mesh is generated 

and solved by the CFD routine.  The minimum CP0 on the sphere along with the pressure 

gradient on the rear of the turret are then evaluated.  

 

Figure C.2. Flow chart showing the optimization function call (Crahan 2010). 
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C.5 Survey of Design Space 

The results of this investigation are shown in Figure C.3. In Figure C.3a, the 

center and trailing-edge points of the virtual duct, points 2 and 3, were held constant at 

(x2, y2) = (0.5, 0.31) and (x3, y3) = (0.85, 0.17), while the leading-edge points x1 and y1 

were varied from 0.1 to 0.4 and 0.17 to 0.27 respectively. The white line delineates the 

region, denoted as region “I”, where the minimum CP0 is greater than -0.5, thus fulfilling 

the critical Mach number constraint for the problem. Figure C.3a shows that the 

location of the leading edge of the virtual duct has a moderate influence on the 

objective function (i.e. the rear pressure gradient). More significantly, the small extent 

of the region “I” in Figure C.3a shows that there is only a limited range of positions for 

the front fence point that will satisfy the constraint on CP0. It should be noted, however, 

that Figure C.3a shows the feasible range of the point 1 for only one selection of the 

points 2 and 3, and that a larger feasible range for point 1 would likely result from 

different values of the other fence points. Despite this limitation, Figure C.3a still gives 

insight into the kind of fence shape that would improve the performance of the virtual 

duct. For example, the fact that the feasible range for point 1 shown in Figure C.3a 

occurs at small values of y/D gives an indication of how much the fence must diffuse 

from point 1 to point 2 in order to maintain the CP0 at point 2 within the -0.5 constraint.   

Figure C.3b illustrates the effect that the location of the middle fence point 

(point 2 in Figure 5.2) has on the objective function. In this case (x1, y1, x3, y3) were held 

constant at (0.25, 0.25, 0.85, 0.17) while x2 and y2 were varied from 0.37 to 0.69 and 

0.28 to 0.44 respectively. Figure C.3b shows that the feasible range for point 2 is 
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significantly larger than for point 1. This result can be explained in that, for the selected 

locations of the points 1 and 3, there is a wide range of locations for the point 2 that will 

satisfy the critical Mach number criterion. In this case, the optimum location for the 

point 2 would be determined primarily by the minimum pressure-gradient; from Figure 

C.3b, this appears to occur at approximately (x2, y2) = (0.5, 0.38).  

  

 

 
Figure C.3. Contour plots of the pressure gradient for different fence 

shapes on a turret by changing (a) x1 and y1, (b) x2 and y2, or (c) x3 and y3 
with the unchanging fence points (x1, y1, x2, y2, x3, y3) being set at (0.25, 
0.25, 0.5, 0.31, 0.85, 0.17). The region donated with the roman numeral 
“I” is the region of the design space where the minimum critical mach 

number is greater than 0.7 (Crahan 2010). 
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Figure C.3c illustrates the effect that the location of the trailing-edge point (point 

3 in Figure 5.2) has on the pressure gradient. In this case (x1, y1, x2, y2) were held 

constant at (0.25, 0.25, 0.5, 0.31) while x3 and y3 were varied from 0.6 to 0.9 and 0.17 to 

0.29 respectively. Figure C.3c shows that the location of point 3 has the strongest 

influence on the rear pressure gradient; this result makes sense if it is recognized that 

point 3 determines the amount of flow contraction at the rear of the fence. The small 

feasible range, located at small values of y, shows that the critical Mach number 

criterion is also better satisfied when the point 3 is inboard of the fence point 2. Figure 

C.3c indicates that the optimum location of the point 3 is in the vicinity of (x3,y3)= (0.6, 

0.17). 

C.6 Summary of Preliminary Study of Design Space 

In summary, the examination of the pressure gradient over the feasible range of 

the points 1 to 3 (i.e. the design space) gives insight into the way in which the 

performance of the virtual duct is affected by basic design parameters. This section also 

shows the kinds of investigations that are necessary to improve the performance of the 

optimization approach.  
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