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GUIDELINES FOR ADAPTIVE-OPTIC CORRECTION BASED ON APERTURE 

 

FILTRATION 

Abstract 

by 

John Paul Siegenthaler 

 

Aperture filtration refers to the effects of viewing optical wavefront distortions of 

infinite extent through a finite aperture.  If the length-scale of the aberration is larger than 

this aperture, then the portion of the aberration visible in the aperture at any moment in 

time will not reach the full magnitude of the aberration seen in its entirety.  The aperture 

acts as a spatial filter, mitigating the effects of large-scale wavefront distortions while 

having little effect on smaller-scale aberrations, with the dividing line between large-

scale and small-scale being the size of the aperture itself.  This dissertation presents and 

charts the development of a set of analytic formulas for judging and predicting the 

effectiveness of adaptive-optic corrective systems applied over finite apertures.  This 

includes some simplified formulas and benchmarks as guides for the minimum 

requirements a system will need to meet to be effective, and the maximum degree of 

effectiveness such systems can reasonably achieve. 
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NOMENCLATURE 

ACL Advanced Concepts Laboratory 

AEDC Arnold Engineering Development Center 

AO Adaptive Optics 

Ap Aperture diameter 

ART Acoustic Research Tunnel 

BQ Beam Quality 

c Speed of light in a vacuum 

CCD Charge Coupled Device 

Cn
2
 Atmospheric optical turbulence parameter 

Cp Specific heat at constant pressure 

Cv Specific heat at constant volume 

d Width, diameter 

DA Structure function for property A 

DM Deformable Mirror 

DVM Discrete Vortex Model 

E Energy 

f Frequency 

f3dB Frequency associated with -3dB gain for a system 

fC Frequency of correction 

fD Frequency associated with disturbances 

fG Greenwood frequency 

FSM Fast Steering Mirror 

fx Scaled far-field position in the x-direction. 

G Gain function 

Gx-tr x-sc Cross spectral density (as defined in Boeing tracking experiment) 

Gxx Autospectral density (as defined in Boeing tracking experiment) 

I Intensity 

Jn Bessel function of the first kind, n
th

 order. 

k Wavenumber 

KGD Gladstone-Dale constant 

L Length 

MC Convective Mach number 

n Index of refraction 

NC Number of corrections per cycle 

ND Notre Dame 
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P Pressure 
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PSD Power Spectral Density 

q Indicator of turbulent kinetic energy 

R Gas constant 

r Radial distance 

r r
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 Relative position vector 

r0 Fried parameter 

RANS Reynolds-Averaged Navier-Stokes 

Rij Reynolds stress, element (i,j)  

rs Distance of spacing between actuators or corrective elements 

s Distance or position along a path 

SABT Small Aperture Beam Technique 

SRA Strong Reynolds Analogy 

SR Strehl ratio 

St Strouhal number 

StX Strouhal number based on a length scale of X 

T Temperature 

t Time 

T/T Tip-Tilt 

TKE Turbulent Kinetic Energy 

u Velocity 

U Velocity, complex transmission function 

U∞ Free-stream velocity 

UC Convection velocity 

V Velocity 

v Velocity (y-direction) 

WCSL Weakly Compressible Shear-Layer 

x Position along x-axis 

x
r

 Position vector 

X  Average value of X. 

X  Ensemble average of quantity X 

X̂  Fourier transform of X 

X
~

 Varying component of property X 

Xrms Root-mean-square of quantity X. 

y Position along y-axis 

Z Length along z-axis 

z Position along z-axis 

αx Angle of deflection in the x-direction 

γ Ratio of specific heats (Cp/Cv) 

γ
2
 Coherence function (as defined in Boeing tracking experiment) 

δvis Visual thickness 

∆x Small change or increment in quantity x 
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CHAPTER 1:  

INTRODUCTION 

1.1. Overview 

This dissertation will explore aspects of aero-optic distortions, produced as light 

passes through air under compressible flow conditions due to motion of air and a physical 

object having high velocities relative to each other.  The goal of this study is to produce 

guidelines and estimates of required performance for the design and construction of 

systems to correct for these distortions.  In pursuit of this goal the effects of apertures as 

filters will be examined and quantified.   

Finite apertures act as spatial filters.  If the length-scale of the aberration is larger 

than this aperture, then the portion of the aberration visible in the aperture at any moment 

in time will not reach the full magnitude of the aberration seen in its entirety.  Thus, the 

overall amplitude or form of the distortion seen in the aperture may depend upon the 

relative length scales of aberrations in the wavefront and the aperture through which 

these aberrations are viewed.  This dissertation presents and charts the development of a 

set of analytic formulas for judging and predicting the effectiveness of adaptive-optic 

corrective systems applied over finite apertures.  This includes some simplified formulas 

and benchmarks as guides for the minimum requirements a system will need to meet to 

be effective, and the maximum degree of effectiveness such systems can reasonably 

achieve 
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1.2. Optical Applications and Distortions 

In recent years there have been increasing efforts to mount optical systems on 

aircraft.  Airborne cameras and other sensors have been around for some time, but their 

performance can be improved.  The increasing demands for higher-bandwidth 

communications are producing greater interest in other forms of transmitting and 

receiving airborne optical systems,
1
 and clearly we are moving into the era of speed-of-

light, airborne offensive and defensive laser weapon systems.
2
 

Whether the energy or signals are being projected or received, the air that an 

aircraft travels through may become a source of aberration and distortion of the 

electromagnetic waves being transmitted.  Studies and characterization of these 

distortions have been ongoing for decades.
3,4,5,6

  However, these studies have focused on 

stationary, ground-based systems.  As will be shown in this dissertation, the descriptive 

equations, quantifying parameters, and guidelines for corrective systems produced by 

these studies are not always applicable to a moving system under flight conditions. 

1.2.1. Optical Distortions 

When visible light or other electromagnetic radiation passes though a medium, 

local variations in the properties of that medium can lead to differences in how that light 

travels along different pathways through that medium.  In a traveling wavefront or beam 

of such radiation, this is perceived as distortions that can cause problems in trying to 

transmit or receive images, signals, or simply the energy itself through that medium.  If 

the goal is to produce an image then these distortions may change the apparent shape and 

position of objects in that image, or degrade its overall resolution.  If the goal is to 
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transmit or receive a signal, then the energy of that signal may be diverted from the 

receiver or target point.
5
 

1.2.2. Aero-Optics 

The term “aero-optics” refers to a subset of this general problem in which the air 

is moving at relative velocities sufficient for compressibility effects to produce 

significant density fluctuations in the turbulent flow.
7
  Also of consideration in aero-

optics are the presence of physical objects in the flow and the shapes of those objects.  

Regions of separated flow produce vortices and additional turbulence as sources of 

optical aberration, and even attached flow may induce forms of distortion referred to as 

lensing effects.
7,8

   

The classification of aero-optics as a separate class of optical problems is used to 

differentiate from problems of propagation through the free atmosphere.  By its very 

nature, propagation of light through aero-optic flow fields takes place over relatively 

short distances measured in meters and fractions of meters, while atmospheric 

propagation takes place over extended distances measured in hundreds or thousands of 

meters.  Additionally the mechanisms producing optical aberrations may be different in 

compressible flow near and object than what is seen in the largely incompressible free 

atmosphere.  As will be shown in later chapters, this fact alone means that different 

approaches to optical analysis are used based on completely different approximations of 

the governing equations. 
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1.2.3. Adaptive Optics 

As mentioned earlier, the goal of this study was to develop guidelines for 

integrating aero-optic effects.  In particular, those guidelines for the design and 

implementation of adaptive optics (AO) systems.
5
  AO systems detect and correct optical 

aberrations using a variety of methods and techniques.   

Significant work has already been done in characterizing atmospheric propagation 

and providing guidelines in the design and implementation of AO systems, but as with 

the case of characterizing the atmosphere’s optical turbulence, the guidelines for 

correcting its resulting aberrations are not suited for use with aero-optic flows.  

1.3. Chapter Overviews 

Chapter 2 will provide background information on the fundamentals of optical 

propagation over short and long distances.  This will include the effects of optical 

distortion, some differentiation in types of distortion, and how passing through a fluid 

medium can produce those distortions.   

Chapter 3 will provide further background information concerning methods of 

measuring optical distortions of different types, and methods of correcting those 

distortions. 

Chapter 4 will examine the body of work already in place concerning atmospheric 

propagation so that it may be compared to aero-optic conditions.  This will include a 

description of the nature of atmospheric turbulence, the optical effects of such turbulence, 

the fundamental assumptions underlying these characterizations, and how those 

characterizations were developed. 
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Chapter 5 will review the results of an experiment performed at the Arnold 

Engineering Development Center (AEDC) at Arnold Air Force Base in Tennessee.  This 

experiment measured optical effects of propagation through a compressible shear layer, 

and demonstrated the existence of optical distortions with a severity that could not be 

explained by the prevailing theories at the time.  Further analysis of these results revealed 

aspects of these disturbances and prompted the studies described in the rest of this 

dissertation. 

Chapter 6 will examine the physical mechanisms governing the development and 

behavior of shear layers, the circumstances under which such flows may form, and why 

they are of particular interest in the field of aero-optics.  It will also describe some theory 

and modeling of compressible shear layers that were developed to explain the results 

from the AEDC experiment.  

Chapter 7 will present the equipment, techniques, and results of a set of 

experiments performed in the Hessert Aerospace Laboratory at the University of Notre 

Dame.  These experiments confirmed aspects of the theory and models described in 

chapter 6, and provided further characterization of the optical effects of compressible 

shear layers.   

Chapter 8 will explore some of the ramifications of these results for the design of 

AO systems.  In particular, it will examine the effects of a finite receiving aperture or 

transmission beam diameter upon the types of aberrations observed, and the effectiveness 

and limitations of basic forms of correction in such cases.   

Chapter 9 will apply the principles and guidelines found in chapter 8 to specific 

cases and will compare these results to those found by other researchers.   
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Finally, chapter 10 will summarize the principles and engineering guidelines 

found in this study, with suggestions for implementation and future studies.
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CHAPTER 2:  

FUNDAMENTALS OF OPTICAL PROPAGATION AND ABERRATIONS 

2.1. Overview 

The purpose of this chapter is to provide an introduction of concepts important in 

optical problems.  In particular, this will focus on those aspects relating to propagation of 

light, how aberrations may affect this propagation over long distances, and where these 

aberrations may come from.   

2.2. Propagation of Light 

Since the 19
th

 century, it has been known that the propagation of light (i.e., 

electro-magnetic energy bounded on the high energy side by ultraviolet radiation and by 

infrared radiation on the low energy side) is governed by Maxwell’s equations.  As such, 

light propagates as waves and the propagation of those waves is subject to local 

variations in the medium in which it travels.
1
  A surface of constant phase as light 

propagates through the medium is defined as its wavefront.
2
  Huygens showed that the 

propagation of a wavefront can be determined by approximating the wavefront as a 

continuum of in-phase point sources smeared over the surface defined by the wavefront 

at an instant in time and tracing the interfering spherical waves emanating from these 

point sources to the next instant in time.  Effects, consequences, and ramifications of this 
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interference will be discussed later in this chapter; however, Huygens further showed that 

such constructions prove that light propagates normal to its wavefront and that these 

directions can be replaced by “rays” of light.  This fact is generally referred to as 

Huygens’ Principle and is the basis of geometric optics.
3
 

In a number of studies
4,5,6

 researchers have shown that when determining 

wavefront effects in the near field (i.e., over the relatively short propagation distance 

associated with aero-optic flows) the use of geometric optics or ray tracing introduces 

negligible error.  More recent studies
7,8

 have revisited and confirmed this fact.  

Furthermore, even the constructs of geometric optics can be relaxed for aero-optics in the 

near field.  The directional change or deviation of an optical ray is so light over distances 

associated with aero-optic flows that rays may be assumed to propagate in straight lines, 

aligned with the direction in which the overall beam is propagating.  Thus, a ray 

represents an optical path corresponding to a beam of light with zero thickness.  A 

collimated laser beam may be thought of as a collection of rays traveling, at least 

initially, in parallel.   

In a vacuum or a substance with uniform optical properties, rays travel in straight 

lines at constant speeds.  However, variations in the properties of a medium can produce 

regional variations in the index of refraction (n) which in turn governs the speed of light 

in that region.  The value of n for a material is defined as the speed of light in that 

material, divided by the speed of light in a vacuum (c).  As a result, the light passing 

through those regions with higher values of n will move slower than the light passing 

through other regions.  Another way to express this is that the pathways with higher 
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average values of n are effectively longer, as far as the light is concerned.  This effective 

length is called Optical Path Length (OPL). 

As previously discussed, a wavefront is defined as a locus of points with constant 

phase,
3
 it can be thought of as a surface defining a “sheet” of light, comprised of the rays 

that left a light source at some common point in time.  Each ray defines an optical path, 

containing every position that a narrow pulse of light would occupy during its time of 

transit.  The wavefront is made of points corresponding to the leading edges of one of 

these rays, and the wavefront as a function of time captures all of the rays at a given 

moment.   

To draw an analogy, if a set of athletes were to begin running from a given point 

or starting line when the starting gun sounded, then a path tracing the course of a single 

runner from start to finish would correspond to a ray.  A line or curve drawn to pass 

through the positions occupied by each of the runners at a particular moment during the 

race would correspond to a wavefront. 

2.2.1. Near-Field Propagation  

As previously noted, inhomogeneities in a medium may produce regional 

variations in n and in the speed of light at that point in that medium.  Details on how this 

occurs will be covered in section 2.3, but for now it is sufficient to note that these 

regional variations do occur. 

When this happens, portions of a wavefront passing through regions with values 

of n that deviate from the average for the region will travel faster or slower than the 
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average speed of the wavefront, and so may lead or lag the rest of that wavefront.  A 

sketch of this principle in action is shown in Fig. 2.1. 

 

Figure 2.1: A sketch of rays and wavefronts in a non-uniform medium.  

In more precise terms, the speed of light in a medium is determined by v = c/n.  

Therefore, in a period of time, ∆t, a ray of light will travel a distance, ∆z, such that  

 
n

c
v

t

z
==

∆

∆
. (2.1) 

From this, a final value of z for some time t can be found.  However, doing this properly 

requires keeping track of where the ray was at each moment or time step in t, so that the 

local value of n as a function of position could be identified. 

A more common approach is to determine the OPL from the initial position of the 

wavefront to the average position of this wavefront at the later time.  The optical length 

of each path segment is then the physical length of that segment multiplied by the index 

of refraction: 

  nzOPL ⋅∆=∆ . (2.2) 

From this,  

 zdzyxnzyxOPL

z

′′= ∫ ),,(),,(
0

. (2.3) 
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A wavefront can then be found as the locations in z as a function of x and y for 

which OPL(x,y,z) is a constant.  The term Optical Path Difference (OPD) indicates the 

variation in OPL from the mean value. 

 ),(),(),( yxOPLyxOPLyxOPD −= . (2.4) 

The index of refraction can also be written as an average index summed with the local 

variations from that average in the form n = n +∆n(x,y,z).  Using this form of expression, 

OPD corresponds to an integration of ∆n, just as OPL corresponds to an integration of n 

along a path. 

Consider a wavefront that begins as a planar wavefront at a point z = 0, and then 

propagates some distance L.  The average position of this wavefront will be at z = L, but 

any distortions induced upon the wavefront will manifest as variations in z-position as a 

function of x and y, so that the wavefront will be defined by a surface z = L + ∆L(x,y).  A 

wavefront is a locus of constant phase; therefore the OPL traveled by the light comprising 

the wavefront will also be the same value for each point on the wavefront.  If we consider 

the OPL from z = 0 to z = L, the average OPL over this position in z should equal the 

constant OPL defining the points of the wavefront with an average position of z = L.  

Therefore, at some position (x,y) in the plane of z = L 

 ∫
∆+

= =
),(

0

),,(

yxLL

Lz dzzyxnOPL  (2.5) 

and 

 ∫∫
∆+

=== −=−=
),(

00

),,(),,(),(),(

yxLLL

LzLzLz dzzyxndzzyxnOPLyxOPLyxOPD  (2.6) 

so 
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 ∫
∆+

= −=
),(

),,(),(

yxLL

L

Lz dzzyxnyxOPD . (2.7) 

Variations over a wavefront, which are represented by ∆L in the equations above, 

are generally measured in microns or fractions of microns.  Changes in n over such 

distances are almost always negligible, so it is reasonable to consider the value of n to be 

constant over the distance from z = L to z = L + ∆L and consider only the variations in x 

and y. 

 ∫
∆+

== −=
),(

),(),(

yxLL

L

LzLz dzyxnyxOPD . (2.8) 

When dealing with air, n is generally close to a value of one, and can be expressed as  

 ),(~1),( yxnyxn += . (2.9) 

From this,   

 ),(~),(),(~1),(

),(

yxnLyxLdzyxnyxOPD Lz

yxLL

L

LzLz =

∆+

== ∆−∆−=+−= ∫ . (2.10) 

The exact value of n varies with density and wavelength in ways that will be addressed in 

section 2.3, but for air under standard atmospheric conditions and wavelengths in the 

range of visible light, n ≅ 1.0003.  Thus, the approximation  

 ),(),( yxLyxOPD Lz ∆−≅=  (2.11) 

can be relied upon as accurate to four decimal places under most conditions encountered 

by systems operating in open atmosphere.   

To express this in words rather than equations, light traveling along paths with an 

OPL less than the average tends to race ahead of the rest of the wavefront while light 

traversing longer optical paths will lag behind, and the amount of lead or lag in position 
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corresponds to the amount by which the paths are longer or shorter.  As an increase in 

position along the propagation vector is linked to a decrease in path length, the signs are 

reversed.  Because of this, OPD serves as the conjugate of the wavefront, which is often 

what is desired for producing a correction of the wavefront.  Despite being conjugates of 

each other, the terms wavefront and OPD are often used interchangeably, especially in 

applications where the magnitude of the distortions in the wavefront is of primary 

interest. 

2.2.2. Propagation over Intermediate Distances 

In Fig. 2.1, the rays are depicted as continuing in straight and parallel lines, 

despite the curvature present in the wavefront.  This is a simplification of things, as 

Huygens’ Principle indicates the rays should be deflected in such a manner as to be 

perpendicular to the wavefront.  In the experimental studies described in chapters 5 and 7 

of this dissertation, the actual induced wavefront variations were normally measured in 

fractions of microns, and the actual curvature and angles of deflection induced were 

likewise very small.  As a result, over the few centimeters of propagation through the 

flow, the deviation of the traveling rays from the paths they would have followed without 

those sources of aberration was so small as to be inconsequential.  In such cases, the 

simplification of assuming a straight path through the flow is reasonable, and only the 

differences in the direction of propagation need to be considered. 

Over longer distances, this assumption can break down.  Any non-zero deflection 

angle will eventually produce noticeable shifts in lateral position with a great enough 

propagation length.  Thus, a different model of propagation is needed over those longer 
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distances.  Understanding this model requires a better understanding of Huygens’ 

principle.   

As alluded to earlier, in constructing his principle, Huygens assumed that each 

point on a wavefront defined at time t could be thought of as a point-source emitting a 

spherical wavefront that propagates with some velocity v, as shown in Fig. 2.2.  After a 

short time ∆t, the wavefront will have propagated a distance of v∆t, corresponding to the 

radius that these spherical wavelets attain in that time.  The shape of the wavefront at t + 

∆t corresponds to the envelope formed by all of the spherical wavelets.
3
  At each point, 

this envelope is tangential to one of these wavelets.  As mentioned earlier, line drawn 

from this point on the wavefront at t + ∆t to the origin point of the wavelet on the 

wavefront at t will be the shortest distance between the two surfaces at that point, and 

will be perpendicular to the surface defining the wavefront at t. 

 

Figure 2.2:  The construction of Huygens’ principle.  

It should be noted that this construction as presented so far is intended to describe 

a continuous wavefront of uniform intensity.  Variations in intensity over a wavefront can 

be accounted for with point sources of differing strength.  As shown in Fig. 2.2, it is also 
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possible and even quite common for a wavefront to be generated over a limited area, or to 

be reduced to a limited area by passing through an aperture.  The region inside the 

boundaries of such wavefronts, or within the projection of these boundaries, is known as 

the region of geometric brightness.  In applying Huygens’ construction, a common 

simplification is to ignore portions of the spherical wavefronts that would extend outside 

of this region.  As only a small number of “wavelets” extend outside of this region, this is 

a generally acceptable approximation for propagation over short distances.  However, 

over longer distances, a significant portion of light may “leak out” into the region of 

geometric shadow, and yet another model of propagation is needed. 

A more rigorous model for plotting and calculating the propagation of light is the 

use of a complex transmission function, derived again from Maxwell’s equations, of the 

form 

 
),(),(),( yxi

eyxAyxU
ϕ= . (2.12) 

In this expression, the function U(x,y) is defined over a plane in x and y, located at z = z0.  

As in the construction by Huygens, the light passing through the plane is treated as if 

each point on this plane were a point source emitting a spherical wave.  The A(x,y) 

portion of Eq. 2.12 is an amplitude component, based on the component of the light at 

(x,y) that is normal to the z0 plane.  This usually corresponds to the peak electrical field 

strength of the electro-magnetic waves that make up light, but other measures of 

amplitude can be used.  While a wavefront is defined as a locus of points corresponding 

to a single phase, the points on this plane may vary in phase, hence the phase component 

e
iφ(x,y)

. 
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If two planes are defined, at z = z1 and z = z2 respectively, and U(x1,y1) is known 

for all points at z1, then U at a point (x2,y2) at z2 can be found by the summation of all the 

spherical waves from z1 as they reach the point at z2.  As shown in Fig. 2.3, the distance 

from a point on z1 to a point (x2,y2) will vary with x1 and y1.  This difference in path 

lengths will produce differences in phase, in addition to whatever variations in phase may 

already exist in U on z1.  Thus, some elements of this sum may add their amplitudes 

together, and some may cancel each other out, depending on their relative phase.  This is 

known as constructive and destructive interference. 

 

Figure 2.3:  Propagation by complex transmission functions.  

The distance (z’) from (x1,y1) to (x2,y2) is 

 2

12

2
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2
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For light with a wavelength of λ, the phase of the wave at (x2,y2) will be 
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The amplitude of a spherical wave falls off with 1/z’ so the optical wave coming from 

(x1,y1) can be expressed at (x2,y2) as 

 λ
π

λ
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The wave function U(x2,y2) at z = z2 is then the sum of all the arriving waves from 

the point sources at z1.  In addition to phase considerations, this summation must also 

take into account that the function U and its amplitude component, A, are based on the 

component of the waves normal to the plane over which U and A are defined.  Including 

this consideration, and taking the limit as the plane at z1 is divided into smaller sources, 

this sum becomes the integral expression 
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in which θz’ is the angle between the path z’ and a vector normal to the z2 plane.  This 

approach is more complete than tracing individual rays or wavefront propagation by 

Huygens’ principle.  However, solving Eq. 2.16 can be computationally intensive.  

Solving it at multiple points on z2 for a complete rendering of the complex transmission 

function U(x2,y2) will be even more so.  Thus, this approach is rarely used unless 

conditions allow for approximations that simplify Eq. 2.16.  It should be kept in mind that 

the derivation of Eq. 2.16 assumes that n is a constant over the region between the planes 

at z1 and z2.  Accounting for variations in n would require replacing the physical distance 

z’ with an OPL as defined in Eq. 2.3. 

It is possible to perform propagation calculations of this form based on an initial 

wavefront rather than a complex transmission function, as illustrated in Fig. 2.4.  In this 
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case, Eq. 2.13 will be modified as z1 is replaced with the z position of the wavefront.  The 

phase on a wavefront is constant, but the local vector of propagation is not. The result at 

z2 will be a complex transmission function rather than a wavefront, unless one takes the 

time to adjust z2 for each (x2, y2) as to find a surface of constant phase from the result.  

Doing this further complicates matters, as the local vector normal to this surface changes 

direction.   

 

Figure 2.4:  Propagation by a complex transmission function, as found 

from a near-field wavefront.  

Most often, an assumption is made that the variations in z across the wavefront 

are relatively small, on the order of a wavelength or less.  A second assumption is that the 

angle between local propagation vectors on the wavefront and a vector normal to a 

nearby z1 plane is likewise small.  If these assumptions hold true, then the z location of a 

wavefront of constant phase φ0 can be converted to the phase component of a complex 

transmission function at z1 by 
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The amplitude component of the transmission function must be found or provided 

separately for this conversion. 

The propagation models shown in Figs. 2.3 and 2.4 trace the development of 

disturbances within a wavefront, but not the introduction of those disturbances.  Figure 

2.5 shows a sketch of a more rigorous approach, combining these models with the one 

shown in Fig. 2.1.  If variations in the local index of refraction are taken into account, 

then the phase contribution from (x1,y1) to (x2,y2) may be adjusted by the OPL rather than 

the physical path length.  This may be achieved by multiplying the propagation length 

(z’) in Eq. 2.13 by the average value for n along the path from (x1,y1) to (x2,y2).  This 

would account for both the development of existing disturbances and the introduction of 

disturbances by propagation through the medium.   

 

Figure 2.5:  Propagation by a complex transmission function, through a 

medium with a variable index of refraction.  

However, keeping track of the index field, n(x,y,z), and finding the average over 

the optical path for each (x1,y1) to (x2,y2) pair may be computationally intensive, and this 
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degree of rigor is not required for all applications.  It should be noted that this assumes 

the propagation lengths involved are short enough that deflection angles induced upon 

these optical paths do not have significant effect upon those paths. 

As a final note, optical propagation of this sort is reversible.  Tracing individual 

rays, as shown in Fig. 2.1, is reversible in that if a ray is traced through a field of variable 

n to some point at the exit pupil with an exit vector, a ray introduced at that point with a 

vector in the opposite direction will follow the same path to the starting point of the first 

ray.  Likewise, the complex transmission model of Eq. 2.16 is reversible. 

2.2.3. Far-Field Propagation 

The term far field has already been introduced without formally defining it.  Here, 

“far field” is used to indicate that the distance traveled (z’) is much greater than both the 

wavelength of the light (z’ >> λ) and relevant spatial length scale perpendicular to this 

path of travel. (z’ >> x, z’ >> y)  Far-field conditions can also be achieved by passing the 

light through a lens.  The image resolved at the focal length of the lens is equivalent to 

what is seen at a far-field distance of infinity.
3
  Meeting the spatial scale criteria usually 

indicates that the light in question is a directed beam with a finite cross-sectional width.    

As noted in the previous section, using Huygens’ principle to calculate the 

propagation of a wavefront of finite area neglects effects seen at the boundaries of that 

area.  Over short distances of propagation, these effects can be safely disregarded, but 

they may become significant over distances that could be considered far-field cases.  

Thus, the complex transmission function is often the best approach for dealing with 

longer propagation distances. 
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Fortunately, the aforementioned far-field conditions serve to simplify Eq. 2.16.  If 

z’ >> λ, then that equation can be approximated by 
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If z’ >> x and z’ >> y for any values of x and y of interest in the plane of origin or the 

plane at the far-field distance, then θz’ will be very small and cos(θz’) ≅ 1, further reducing 

the integral to 
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If we define Z as the distance from the z1 plane to the z2 plane, or Z = z2 – z1, then Eq. 

2.13 can be rewritten as
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To second order, 2
8

1
2

111 εεε −+≅+ , provided ε << 1, which has already been 

established in the far-field conditions of spatial scale.  Thus,  
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This can be further simplified if more stringent definitions of “far field” are applied.  The 

Fraunhofer limit is one in which 
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for all values of x1 and y1 of consequence in the plane of origin. This is sufficient to set   

z’ ≅ Z in the portions of Eq. 2.19 where z’ is not an exponent. The term e
i2π z’/λ

 requires a 
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bit more finesse.  Dividing Eq. 2.21 by λ and applying the conditions of 2.22 allows for 

several terms to be discarded, yielding 
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Inserting these approximations into the integral and moving terms that do not 

contain x1 or y1 outside of the integral leads to the following form: 
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Equation 2.24 is much more manageable than Eq. 2.16 and can be used to compute far-

field propagation.  However, it is useful to perform one last alteration, based on an 

exchange of variables as follows: fx = x2/λZ, fy = y2/λZ.  By applying these, Eq. 2.24 

becomes 
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This is significant, because the integral expression in the right-hand side of Eq. 2.25 is the 

form of the two-dimensional Fourier transform of U(x1,y1).
3,9

  The widespread 

availability of tables of Fourier transforms for various functions as well as Fast-Fourier-

Transform subroutines in many software packages can be used to greatly speed up these 

calculations.  The use of these and related methods forms the basis for Fourier Optics.
10

 

It should be noted that the propagation models presented in this section so far are 

based on near-field models that only account for the effects of distortions already present 

in a wavefront.  They do not deal with the mechanisms that induce distortions.  

Introducing these mechanisms into these models was addressed in the text associated 

with Fig. 2.5 in section 2.2.2.  However, over longer propagation lengths, it is unusual to 
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have the detailed knowledge of the index field, n(x,y,z), necessary to implement the 

measures described in that section.   

Even if that knowledge were at hand, making use of it would most likely have 

prohibitive computational costs when dealing with propagation lengths on a large scale.  

Additionally, the model of the complex transmission function of Eqs. 2.12 and 2.16, on 

which these far-field models are based, assumes that all point-to-point propagation paths 

are straight lines.  Long propagation distances make it more likely that the deflection of 

rays may have a significant role 

One of the most common approaches to modeling propagation over long distances 

in a medium involves the periodic use of phase screens.  A phase screen is an expression 

of the variations in phase (∆φ) induced upon a wavefront by index variations in the 

medium or other effects.  The phase component of a complex transmission function is 

then modified as 
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As noted, details of n(x,y,z) over a long propagation path are unlikely to be 

known, but some measure or characterization of the phase variations likely to be induced 

may be found without knowing those details.  The characteristics of phase distortions 

induced by the free atmosphere have been the subject of study for some time.
1
  Details of 

propagation through free atmosphere are presented in chapter 4, but for now it is 

sufficient to state that the probabilistic distribution of characteristics for atmospheric 

phase distortions are known and random phase screens with these characteristics can be 

generated for the purpose of propagation modeling.  For other forms of flow, a different 

model or screens based on experimental data would be needed. 
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The extended propagation model of this form breaks the long optical path into a 

series of shorter optical paths.  Over each segment, Eq. 2.24 or Eq. 2.25 is applied to 

trace the development of the wavefront over that distance.  At the end of each segment, a 

phase screen with characteristics appropriate to the conditions expected over that segment 

is applied and the process is repeated for the next segment.  The number of segments 

required depends on the fidelity desired, the frequency of changes in conditions 

encountered along the path, and the distance over which acquired deflections of 

individual rays might become too great to ignore.  As always, if wavefronts are the 

preferred form of expressing this form for analysis or graphical display, Eq. 2.17 can be 

used to convert from wavefronts to complex transmission functions and back.   

It should be noted that the goal of this type of propagation model is not to 

simulate what actually happens as the light propagates, but to produce an end result with 

the same characteristics as those produced under a given set of physical conditions. 

2.2.4. Irradiance Patterns 

In many applications, the primary interest in the light reaching a point is the time-

averaged intensity of the light falling on an object.  In this case, “time averaged” refers to 

the time scale of the electromagnetic waves as they travel, not the time scale of changing 

disturbances to the wavefronts due to changes in the flow they pass through.  The proper 

optical terminology to refer to the flux density of incoming energy is “irradiance”, which 

is measured in units of energy flow per unit time per unit area.
3
  

Irradiance (I) can be found quite easily from a complex transmission function, 

being proportional to |U(x,y)|
2
.  Most often, the amplitude term A(x,y) within a complex 
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transmission function U(x,y) is defined as the peak electric field strength at that point 

over a full cycle from 0 to 2π in phase.  If this is so, then the proportionality relationship 

may be expressed as
3
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Using the expression for U from Eq. 2.25, this becomes 
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where Û indicates the Fourier transform of U.  

There are three specific forms of irradiance pattern that occur frequently enough 

to be mentioned here.  Those resulting from rectangular apertures with uniform 

amplitude, those resulting from circular apertures with uniform amplitude, and Gaussian 

beams. 

In using complex transmission functions, an aperture is defined by setting the 

amplitude outside of the aperture’s open region to zero.  Thus a wave of uniform 

amplitude and phase passing through a rectangular aperture of dimensions a and b is 

expressed as follows: 
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with A0 and φ0 set to constant values.  With the above definition, there exist propagation 

distances that fulfill conditions such as Z >> x mentioned in the previous section for far-

field propagation.  In this particular case for a rectangular aperture, a separation of 

variables between x and y (or fx and fy) can be performed and Eq. 2.25 becomes: 
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The solution to the integrals in Eq. 2.30 is of the form sin(x)/x, commonly defined as the 

sinc function: 
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and 
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The form of sinc(πx) and the square of this function are shown in Fig. 2.6.  The 

primary characteristic of these curves are the large central lobe and the smaller, periodic 

lobes that decrease in magnitude with increasing distance from the origin.  Eq. 2.32 

indicates that the far-field irradiance pattern produced by a rectangular aperture will have 

the form of a sinc-squared function along one axis, multiplied by another sinc-squared 

function in the other axis, often referred to as a double-sinc pattern. 
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Figure 2.6:  Sinc and squared sinc functions.  

Figure 2.7 shows plots of a rectangular aperture as defined in Eq. 2.29 and the 

double-sinc irradiance pattern produced by an aperture of these dimensions according to 

Eq. 2.32.  An interesting trait found in far-field patterns of this sort is that the central 

bright spot is wider in the direction of the aperture’s narrower dimension and vice versa.  

More importantly, a portion of the energy projected through the aperture is projected into 

lobes off to the sides, rather than the central spot in the far field.  While the aperture 

producing this irradiance pattern is finite, the far-field pattern is not, with faint sidelobes 

extending outward into infinity, even if the magnitude of those lobes drops below any 

significant threshold.  Therefore, the spot size of this pattern is defined by the first set of 

points at which the irradiance drops to zero in the double-sinc pattern, at fx·a/2 = 1 and 

fy·b/2 = 1 for an aperture of dimensions a x b. 
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Figure 2.7: (a) A rectangular aperture (b) The associated far-field pattern 

of irradiance.  

A circular aperture is defined in much the same way as the rectangular aperture, 

with U as a constant within some radius of (x1, y1) = (0, 0) and U = 0 beyond that radius.  

It becomes more convenient to work in polar coordinates for this case.  It is also 

convenient to define a scaled far-field variable fr = r2/λZ, much like fx and fy were defined 

for use in Cartesian coordinates.  In polar coordinates, with a circular aperture of radius 

r0, a constant transmission function U = A0 across the aperture, and the aforementioned 

change of variables Eq. 2.24 becomes: 
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As neither U at the aperture nor the aperture itself vary in θ, the solution to Eq. 2.33 does 

not vary in θ and can be considered solely a function of fr: 
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and 
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where J1 is a first-order Bessel Function of the first kind.  Fig. 2.8 shows the form of 

J1(r)/r and of the square of this function. 

 

Figure 2.8:  Bessel function-based curves.  

As with the sinc function, there is a central lobe of large amplitude, and smaller 

lobes of decreasing size with increasing distance.  In polar coordinates, the central lobe 

will be circular, and the smaller lobes will form rings around the central lobe.  This 

irradiance pattern is known as the Airy disk, and it is shown in Fig. 2.9 (b).  The spot size 

for this far-field pattern is defined as the radius or diameter of the first dark ring where 

the irradiance goes to zero.  This ring contains 84% of the total energy flux in this 

pattern.
11
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Figure 2.9: (a) A circular aperture (b) The associated far-field pattern of 

irradiance.  

The previous two cases for rectangular and circular apertures assume that the light 

across the aperture is of uniform amplitude.  This is known as a “top hat” beam.   

However, many systems that output directed beams produce beams that vary in irradiance 

over the cross-section of the beam.  The most common form of this is the Gaussian beam, 

with a profile that corresponds to, or can be approximated by, a Gaussian curve of the 

form   
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Fig. 2.10 below shows the intensity of a Gaussian beam in comparison to a top hat beam. 
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Figure 2.10: Near-field irradiance for a top hat (a) and a Gaussian (b) 

beam, both of radius 0.5.  

The Gaussian profile lacks the distinct edges of the top hat profile, and so 

defining the size of the beam is open to interpretation.  The most common definition is 

for a beam “diameter” of 2ω.  A circle of radius ω around the central axis of a Gaussian 

beam contains 85% of the beam power,
12

 which makes it a near equivalent to the 84% in 

the central lobe of an Airy Disk.   

As in the other cases, Eq. 2.24 or 2.33 can be used to find the far-field irradiance 

pattern.  However, unlike the previous two examples, there is no finite aperture, and so 

the area of integration extends out to infinity.  This would seem to invalidate many of the 

assumptions used to arrive at Eq. 2.24, as even an infinite propagation distance cannot be 

significantly larger than the dimensions across an infinite near-field expanse.  However, 

the Gaussian curve falls off so that portions of the curve more that 2ω from the centerline 

of the beam have very little contribution to the integral, and propagation distances such 

that Z >> 4ω
2
/λ can be considered to fulfill the Fraunhofer limit presented in Eq. 2.22. 

Another change from the previous examples is that the amplitude function 

U(x1,x2) is not a constant, but is instead proportional to the square root of the Gaussian 
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curve in Eq. 2.36, since irradiance is proportional to the square of the magnitude of this 

function.  That is: 
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which is also a Gaussian curve.  The Fourier transform of a Gaussian is also a Gaussian.  

The transmission function in the far field is then proportional to this new Gaussian 
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and the irradiance is proportional to the square of the magnitude of this transmission 

function,  
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which is yet another Gaussian. 

An important aspect of Gaussian beams is that they can be focused only to some 

minimum spot size, and no further.  This spot size is then inversely proportional to the 

divergence of the beam.  As noted, the value ω in Eqs. 2.36 through 2.39 is considered to 

be the radius of the beam.  If the wavefront of the beam is truly planar at a given point, 

then that radius is also the smallest possible radius for that beam, known as the “waist 

radius” or ω0.  From that point onward the beam will expand with distance, as indicated 

by the term fr = r2/λZ in Eqs. 2.38 and 2.39.  Reducing the waist radius of such a beam 

requires an increase in the expansion angle.  In fact, this phenomenon is seen in beams 

passing through apertures as well, as shown in Fig. 2.7 where the narrower dimension of 

the rectangular aperture produces a wider dispersion in the far field.  The scaled far-field 

position variables of fr, fx, and fy in the preceding derivations are based on this expansion 

of the beam, and the fact that for relatively small angles of expansion, θ≅ sin(θ) ≅ r/Z.  
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They are also based on the fact that the expansion angle is proportional to the wavelength 

of the light, so that  

 
0πω

λ
θ = , (2.40) 

measured relative to the center-line of the beam. 

As a beam expands, the wavefronts go from being planar to spherical, with a 

radius of curvature centered on the point at which the beam was at its narrowest radius.  

This phenomenon reflects the fact that a narrow beam or small aperture comes to 

resemble a point source with increasing distance. 

In all of the cases above, the beam is assumed to be initially of uniform phase, and 

the only effect on the far-field patterns is the interference based on the near-field 

amplitude pattern, whether that pattern is defined by a finite aperture or a Gaussian curve.  

This is known as the diffraction limited case, and is viewed as the best possible result in 

transmission or imaging of light. 

2.3. Fluid-Optic Interaction 

In many materials, including the collection of gasses known as air, n varies 

primarily with density (ρ).  This is often a linear relationship, at least over limited ranges 

of density variations, and is expressed in the Gladstone-Dale
13

 relationship 

 ρ⋅+= GDKn 1 , (2.41) 

where KGD is a constant for constant wavelength.  Expressions for the refractive index of 

air are continuously under refinement, but one of the currently accepted expressions for 

dry air under standard conditions (288.15 K, 101,325 Pa) and light of wavelength λ is
14
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In the case of the previously mentioned heat-shimmer, the rising hot air is subject to the 

ideal gas law,  

 TRP ρ= . (2.43) 

In free atmosphere, pressure (P) will be very nearly the same for both the hotter and 

cooler air, but of course the temperature (T) is higher for the hotter air.  Since the ideal 

gas constant (R) is a constant for a given medium and the medium is air (R = 287.056 

m
3
Pa/(kg K)) throughout, the density of the warmer air must be lower than that of the 

cooler air.  Thus, the warm air rises through the less dense air around it, and the changes 

in density “bend” the light passing through this flow.  According to Eq. 2.43, the density 

of air under the previously mentioned standard conditions (ρ0) is 1.2250 kg/m
3
. 

Combining Eqs. 2.41, 2.42, and 2.43 the index of refraction of air can be written 

as 
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for values of λ in µm, P in Pascals, and T in Kelvin.  Refinements to this model can be 

made for the presence of water vapor and for variations in the amount of CO2,
14,15

  

however, such measures are beyond the scope of this work.  In or near the visible range 

of light, Eq. 2.44 can be approximated by 
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From this expression, variations in the index of refraction can be written as
16
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Thus, variations in either pressure or temperature can produce variations in the index of 

refraction.  

2.3.1. Near-Field Effects 

As with propagation, the approach taken in calculating and describing optical 

effects may differ between the near field and the far field.  In the near field, these effects 

are often expressed in terms of wavefronts, deflection angles, and complex transmission 

functions.  As noted in the previous sections on propagation, the best case scenario is 

based on having no phase variation in the near field, which requires setting these values 

to zero, or to some constant value. 

The fundamentals of near-field propagation through a medium with variations in 

n were covered in the first part of section 2.2.1, particularly the text associated with Fig. 

2.1 and Eqs. 2.1 through 2.3.  As was addressed in those passages, light travels faster in 

regions with lower values of n, and as a result portions of a wavefront may lead or lag 

other portions of the wavefront.  These changes in n are likely to correspond to regions of 

different density as indicated by Eq. 2.41.  The variations in the wavefront can also be 

expressed in terms of OPD.   

As the wavefront may have a different value of displacement or OPD at each 

point, it is often more convenient to describe the overall magnitude of these deviations 

from the mean through the root-mean-squared (rms) value of the individual local 

variations.  While OPDrms is a good indicator of the degree of optical distortion produced 

by a given flow or set of conditions, it is variations in phase that determine the effects in 
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the far field.  Equation 2.14 can be used to convert from wavefront displacement (∆z) to 

phase, and since OPD is the conjugate of this displacement: 
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Likewise, the root-mean-square of phase variations can be found by scaling OPDrms by 

2π/λ.  This is often called the phase variance and is written as σφ or σθ depending on what 

symbol one is using to indicate phase. 

For some applications, deflection angles matter as well as variations in wavefront 

location.  Deflection angles refer to a single ray traced through the flow.  Earlier 

discussions indicated that angular deflections were small enough that actual displacement 

of the angled beam compared to a straight beam parallel to the overall direction of 

propagation was negligible.  That is true, but only over relatively short propagation 

distances, as the actual side-to-side deflection of a ray or beam is such that ∆x = tan(θx)L 

for propagation over some distance L.  As the ray encounters variations in the medium, it 

deviates from its original direction of travel, albeit ever so slightly.  After experiencing 

many incremental deviations, it finally emerges from the region of aberrating effects with 

some net deflection, labeled as -θx in Fig. 2.11.  These deflection angles can be measured, 

even when the propagation lengths are short enough that said deflection has little direct 

effect on the form of the wavefront.   
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Figure 2.11: An optical ray as part of a wavefront passing through a 

distorting flow field.  

The refractive bending equation
17

 indicates that the bending of a ray in a medium with 

variations in the index should be such that the radius of curvature of the ray’s path (RC) 

should be  
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, (2.48) 

The incremental change in deflection angle (∆θ) associated with an incremental 

progression along the path of the ray (∆s) is then described by 

 θθ ∆≅
∆

=∆
CR

s
)tan( , (2.49) 

with the approximation applying for small changes in the deflection angle.  The gradient 

in Eq. 2.48 reflects the change in the index perpendicular to the path.  Taking these 

incremental steps to their limit,  
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to first approximation, where ⊥s is the direction perpendicular to s at each point along s 

within the plane of the page in Fig. 2.11.   

As was addressed in section 2.2.1, it may be acceptable to treat this curved path as 

effectively a straight line under some circumstances.  Those circumstances would be if 

the magnitude of variations of the path from side to side in the flow were insignificant 

compared to the size of features in the flow causing these variations.  In the arrangement 

shown in Fig. 2.11, variations in x should be equal to the distance traveled in y, multiplied 

by the tangent of the deflection angle.  If the deflection angle is small, then the tangent of 

that angle can be approximated by the angle itself. 

 xx yyx θθ ∆≅∆=∆ )tan( . (2.51) 

Thus, if this product, ∆yθx, is small relative to any length scale of significance for 

variations of n in the flow, then the path can be reasonably approximated as a straight 

line.  If this is true and the condition ∆y>>∆x is also true, then the approximation made in 

Fig. 2.1 may be used in calculating OPD and similar properties.  With these 

approximations, s can be assumed to be effectively in the direction of the y axis and Eq. 

2.50 becomes 

 ∫ ∂
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1

1
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θ . (2.52) 

A wavefront corresponds to the position of all rays generated from the same 

source at the same time, at some point in time later on.  By Huygens’ Principle a 

wavefront always travels perpendicular to itself.  Thus each point on the wavefront 

corresponds to a ray that is traveling perpendicular to the surface defined by the 

wavefront at that point.  From this principle of perpendicularity, the deflection angle of 
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this ray will also be the angle between a line tangent to the wavefront at that point and a 

line defined by the slope the wavefront had before aberrations were produced.   

In the circumstances shown in Fig. 2.11, this means θx is not only the angle 

between a ray and the y-axis, but also the angle between a line tangent to the wavefront at 

that point and the x-axis.  This tangent line is defined by the slope of the wavefront at that 

point, which means tan(θx) at a point equals the derivative of the wavefront in x at that 

point.  The approximation of tan(θx) ≅ θx for small values of θx has already been 

mentioned, which leads to the following relationships: 

 )()tan( xy
x

WFxx
∂

∂
=≅ θθ . (2.53) 

where yWF(x) is the locus of points defining the wavefront and 

 ∫≅ dxxy xWF θ)( . (2.54) 

The measurement and reconstruction techniques used in the experimental work 

described in chapters 5 and 7 is based upon the relationship of Eq. 2.54, and will be 

described in more detail in chapter 3. 

2.3.2. Far-field Effects 

Section 2.2.3 described how the description of a near-field wavefront may be 

converted into a far-field wavefront or irradiance pattern.  Optical correction is often 

performed in the near field, but the motivation for dealing with these quantities is to 

counteract effects in the far field.  The forms of aberration seen in the far field tend to fall 

into various categories, often determined by the size of the beam compared to the size of 

the structures in the flow causing the aberration.   
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If the material that a wavefront propagates through has a higher average index of 

refraction than what was assumed or expected, then that wavefront will lag behind the 

expected position and the phase of the light arriving in the far field will likewise lag in 

phase.  A lower average value of n will produce wavefronts and phases that lead the 

expected results.  This sort of mean lag or lead is called piston.  Piston has no effect on 

the irradiance pattern in the far field, and so it is often ignored in applications where the 

far-field irradiance is the only matter of concern.  On the other hand, some 

communications or sensing applications are dependent on relative phase. 

Tip and tilt (T/T) is a net deflection in the beam.  Just as single rays can be 

deflected, so can larger beams acquire some net deflection.  In the near field, this is seen 

as a linear change in phase or a slope on a wavefront or OPD.  In the far field, this has 

little effect on the overall shape of the irradiance pattern, but causes a shift in the location 

of that pattern, as seen in Fig. 2.12.  As shown in the figure, three wavelengths worth of 

tilt across an aperture can move the irradiance pattern so as to miss the target point 

entirely.  Time-varying net deflection of a beam as shown here is commonly referred to 

as drift if it occurs slowly or jitter if it happens at higher frequencies.  As shown in Fig. 

2.12, the simulated aberration producing tilt is defined by a linear function over the 

aperture, and lacks any higher-order or higher spatial frequency components.  Thus, T/T 

aberrations are primarily associated with variations in the material that have a length 

scale much larger than the beam diameter. 
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Figure 2.12: Phase varying linearly over an aperture (a) and a displaced 

far-field pattern (b). 

If the wavefront across the aperture is a convex curved surface, rather than a flat 

surface as shown in Fig. 2.12, then the far-field pattern will be blurred or spread, as 

shown in Fig. 2.13.  A concave wavefront can focus the beam, producing a far-field 

pattern at some nearer distance, but such wavefronts become convex and defocused at 

distances past this focal length.  As with T/T, defocus is associated with variations in n on 

a scale larger than the beam diameter.  However, there is a limit to how large these 

variations can be relative to the beam and still produce noticeable curvature. 
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Figure 2.13: A spherical phase aberration over an aperture (a) and an 

unfocused far-field pattern (b).  

If aberrations are produced on a length scale close to or smaller than that of the 

beam size, referred to as higher-order aberrations, then it may cause the far-field pattern 

to break up into more than one pattern.  Since the far-field irradiance pattern is 

proportional to a Fourier transform of the near-field wavefront, aberrations with higher-

order spatial frequencies divert energy into side lobes in the far field.  Unlike the net 

deflection of the entire beam caused by T/T, this splits energy off from the main beam 

rather than diverting the entire beam. Aberrations with a higher spatial frequency will 

cause a wider divergence.  In extreme cases, most of the energy may be diverted into the 

side lobes and the main beam may effectively disappear.   

In imaging applications this can produce double or “ghost” images.  In 

applications of directing a beam at a target or receiver, this both spreads the energy and 

makes aiming somewhat problematic.  As an example, Fig. 2.14 shows the results of an 

aberration defined by two full cycles of a sine wave across the aperture.  The resulting 
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far-field pattern is centered on the origin, but most of the energy in the pattern passes to 

one side or the other of this target point. 

 

Figure 2.14: Phase variations over an aperture (a) and a divided far-field 

pattern (b).  

Aberrations produced by fluid-optic interaction are almost never of a single type 

or spatial frequency.  Fig. 2.15 shows a simulated wavefront aberration with random fine-

scale aberrations, which also includes some measure of T/T and defocusing curvature.  

The resulting distortions in the far field are more characteristic of what might actually be 

observed in light passing through a severely aberrating turbulent flow. 
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Figure 2.15: Phase variations over an aperture (a) and a blurred and 

fragmented far-field pattern (b).  

As with near-field effects, it is often convenient to have a way of expressing the 

severity of the far-field aberrations as a single numerical value.  The most commonly 

used indicator of this sort is the Strehl ratio.  In the unaberrated patterns shown in Figs. 

2.7 and 2.9, the highest level of irradiance (I0) is found at the center of the pattern.  This 

point, also referred to as the “on-axis” point, represents the point towards which the light 

is aimed or directed.  As shown in Figs. 2.12, 2.14, and 2.15, aberrations divert energy 

from this point by shifting or splitting the pattern.  The Strehl ratio is the ratio of the flux 

density at the on-axis point to the flux density that would exist in the ideal, diffraction-

limited case. (I / I0)  If phase variations are not too large then the Strehl ratio can be 

estimated by
18
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While this approximation was originally developed for relatively small 

perturbations in the wavefront (σφ < 2 radians) it has been found to be accurate within 

10% for values of the Strehl ratio down to St = 0.3. 

Since aberrations tend divert energy from this center point, the Strehl ratio is 

almost always less than or equal to one.  It is possible for some strange form of phase 

aberration to divert energy to the center point, rather than away from it, but this is almost 

never seen in naturally occurring aberrations.  Another quantity, beam quality (BQ) has 

been defined in a number of ways, but the most common definition is based on the Strehl 

ratio
11

 as 

 
I

I
SR

BQ 01 == . (2.56) 

Just as the Strehl ratio is normally less than or equal to one, with SR = 1 being the ideal, 

BQ is normally greater than one, with BQ = 1 being the ideal. 

The Strehl ratio is based on the irradiance at a single point, but many applications 

have a somewhat greater tolerance for spreading or divergence of the irradiance pattern.  

In communications applications, the receiving sensor will usually have some finite area, 

and the total energy falling on that region is what matters, not the distribution of energy 

within this region.  In other applications, energy delivered to one point spreads to the 

surrounding region.  Thus, for some applications it makes more sense to define a 

“bucket” as the area within some radius of the on-axis point, and then to judge results by 

the ratio of total energy flux into this bucket between the aberrated and unaberrated 

conditions, rather than just at the on-axis point.  However, what constitutes a reasonable 

size for this bucket varies with the application in question, and often depends more on 

personal judgment than on any widely recognized standard. 
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CHAPTER 3:  

METHODS OF OPTICAL MEASUREMENT AND CORRECTION 

3.1. Overview 

The concept of an adaptive-optic system, or AO system, was briefly introduced in 

chapter 1 as a system that can be used to measure and then compensate for optical 

aberrations.  This may be done at the receiving end of an optical system, to correct 

aberrations that have occurred as the beam propagated, or this may also be done in a 

transmitting system, if the aberrating effects of the flow in the transmission path are 

known.  In this latter case, a conjugate wavefront is imposed on the beam prior to 

projecting it through the flow, so that the beam emerges from the aberrating medium 

restored to or near diffraction-limited performance.
1
 

One realization of an of the adaptive-optic beam train is the Notre Dame adaptive-

optic system designed by Xinetics in cooperation with the Boeing, SVS.  A schematic of 

the system is shown in Fig. 3.1.  What can be noted in Fig. 3.1(a) is that the correction is 

applied in two stages.  The first element the incoming beam encounters is a tip-tilt (T/T) 

mirror; an enlargement of the components of the T/T mirror is shown in Fig. 3.1(b).  The 

T/T mirror is re-imaged on the deformable mirror (DM) which, in effect, adds an ability 

of the DM to tip and tilt.  Note also that the T/T mirror is controlled by a separate, in this 

case analog, stand-alone processor.  It should be noted that the system also incorporates 
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near-stationary correction components for some experiments to remove well-defined, 

mean aberrations such as spherical aberrations.   

 

Figure 3.1: Notre Dame Adaptive-Optic system.  (a) Full system. (b) 

Detail of the Tip-Tilt compensation portion of the system.  

Many AO systems use a similar two-stage approach to correction, and the Notre-Dame 

system will be referenced as an example throughout this chapter.  This chapter will 

address the two types of aberrations addressed in these two stages, how such aberrations 

may be measured, and how corrections may be applied.  It will also address some of the 

concerns and limitations of measurement and corrective systems. 

3.2. Tip/Tilt Aberrations 

As noted in chapter 2, a ray passing through an aberrating medium may be 

deflected at some angle α from its original course.  Likewise, an entire beam as a whole 

can be deflected, causing the far-field pattern to wander.  An example of this was shown 

in Fig. 2.12 on page 41. 
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3.2.1. Definitions of Tilt 

As noted, the purpose of tilt correction is to remove net tilt from a wavefront and 

center the far-field pattern.  However, “tilt” and “center” are not as clearly defined as one 

might think.  Huygens’ Principle defines tilt and a vector of propagation locally at each 

point in a wavefront.  For tilt of a wavefront as a whole, there are two prevalent 

definitions. 

Gradient-tilt, or G-tilt, is an average of all the local gradients on a wavefront, 

based on the assumption that an average of all the local propagation vectors on a 

wavefront should yield an average vector of propagation for the entire wavefront.
2
  

Zernike-tilt, or Z-tilt, comes from the set of Zernike polynomials that are often used to 

construct approximations of wavefronts and other surfaces.  The 1

1Z and 1

1

−Z Zernike 

polynomials are of the form z = r cos (θ) and z = r sin (θ) respectively, or z = x and z = y 

in Cartesian coordinates.  The polynomial Z0 is of the form z = 1.  Therefore, using the 

first three Zernike polynomials to approximate a wavefront takes the form of a least-

squares fit to a flat line (A + Bx) in two-dimensional constructions or a plane (A + Bx + 

Cy) in three-dimensional approximations.
3
  As the desired end result of AO correction is 

a flat line or planar surface that is perpendicular to the desired vector of propagation, one 

might expect that applying correction to remove the slope of this approximation to be an 

effective first step in achieving this. 

However, as can be seen in Fig. 3.2, these two forms of tilt do not necessarily 

agree.  Using a full cycle of a sine wave as a simulated wavefront, the average of the 

local propagation vectors is a vector perpendicular to the x-axis, which indicates no net 

angle of deflection and no net tilt.  On the other hand, a least-squares fit with a function 
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of the form y = A + B·x shows a significant slope across the extent of this wavefront, 

indicating tilt. 

-0.5 -0.3 -0.1 0.1 0.3 0.5

              Wavefront

              Local Gradient

              Average Gradient (g-tilt)

              Linear Fit (z-tilt)

 

Figure 3.2: G-tilt defined by averaging local tilt, Vs Z-tilt defined by a 

linear fit.  

Either definition of tilt may be considered to be correct, depending on the intended 

application.   

G-tilt is the average of the deflection angles or slopes across a wavefront.  If the 

wavefront is of uniform irradiance and is defined by a surface z(x) across a finite aperture 

extending from x1 to x2, then the x-component of G-tilt is defined by 
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Thus, for a wavefront of uniform irradiance over a one-dimensional aperture, G-tilt can 

be found by drawing a line between the endpoints of the wavefront at the edges of an 

aperture.  In the example of Fig. 3.2, these endpoints are on a sine wave, separated by one 

full cycle, so z(x2) = z(x1) and the G-tilt = 0.  This property could be used as a means of 

detecting tilt across an aperture by measuring phase or OPD around the edges of an 

aperture. 
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Z-tilt is found by selecting constants A and B to minimize the expression 
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The value of B then corresponds to the overall tilt of the wavefront by this definition.  If 

the point of reference is shifted so that the aperture of width d is centered around x = 0, 
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In the example of Fig. 3.2, if the sine wave used to represent a wavefront has an 

amplitude of a and a period of Λ, then  
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These expressions ignore variations in y, or cases in which irradiance is not 

constant in the near field.  In cases with varying irradiance, such as that in a Gaussian 

beam, the wavefront displacement, z(x), must be weighted by the irradiance in the 

wavefront at that point.
4
 

3.2.2. Measuring Tilt 

While tilt can be inferred from the near-field wavefront as indicated in the 

preceding paragraphs, the most common means of measuring tilt is to find the center of 
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the irradiance pattern in the far field.  The point of T/T correction is to align the beam 

onto a target, thus the angle between the intended axis of propagation and the vector 

pointing to the center of the far-field pattern is a very practical definition of tilt. 

This angle is most often found with some form of position sensing device, which 

receives an optical intensity pattern, and returns a value based on the position of the 

center of this pattern.  If the irradiance pattern of a beam is found to be centered at (xc, yc) 

while the desired on-axis location would be (0, 0), and it is known that the deflection 

occurred at some distance L from the sensor, then the angle of deflection (θx) can be 

found to be 
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The approximations θx ≅ xc / L and θy ≅ yc / L hold if xc and yc << L. 

However, just as there is more than one definition of tilt for a wavefront, there is 

more than one way of defining the center of an irradiance pattern.  This is illustrated by 

the two most common types of position sensors, quad cells and centroiding devices.  

The four-element quadrant detector, or quad cell, is a set of four irradiance 

sensors, often some form of photodiode.
1
  Arranged into a four-quadrant pattern, each 

cell produces a signal proportional to the total energy flux due to light falling on that cell.  

A representation of this arrangement is shown in Fig. 3.3.  If we let A, B, C, and D 

represent the signals from these cells, then for small variations in from a centered 

position, the x-position of the irradiance pattern will be proportional to the 

quantity ( ) ( )( ) ( )DCBADCBA ++++−+ .  That is, the pattern is held to be centered at 

x = 0 when the total energy falling on the left half of the quad cell equals the total energy 
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falling on the right half.  Scaling the difference in energy falling on the two halves by the 

total energy falling on the entire sensor produces a result that will be proportional to the 

lateral shift in the pattern, with a constant of proportionality that will remain roughly the 

same even if there are changes in the pattern or overall irradiance.  A similar relation 

holds for the y-position.   

 

Figure 3.3: Sensor regions of a quad cell.  

As noted, the proportionality for shifts in the location of the irradiance pattern 

only applies if that location is near to the center of the sensor, compared to the size of the 

pattern or the size of the central spot of the pattern if it has one.  If a significant majority 

of the light falling on the sensor falls into one cell, the sensor has no way of telling where 

in the cell this concentration of incoming energy may be.  A quad cell works best when 

the size of the sensor is only slightly larger than the size of the pattern for which a 

location is to be found.  If the pattern is larger than the sensor, then significant portions of 

the light in the pattern may miss the sensor and will not be accounted for.  If the pattern is 

small enough to fit into one cell, then the dynamic range of the sensor will be limited.  
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Despite these limitations, quad cells are commonly used because their relative simplicity 

lends itself to implementations that are reliable and durable when used in the field. 

Another type of position sensor is the lateral effect detector, which is also known 

as a position sensing device.  This sensor consists of a sheet of photoelectric material 

with electrodes along the four sides of the sheet,
5
 as shown in Fig. 3.4.  When photons 

strike the photoelectric material, free electrons are produced that flow into the electrodes.  

The number of electrons produced at a point on the sensor is determined by the energy 

flux density of the light falling on that point.  Some of the electrons produced then 

become current flowing into the four electrodes.  These free electrons are more likely to 

flow into the electrode closest to their point of generation.  If the light were focused to an 

infinitesimal spot, then the position of that spot between electrodes A and B in Fig. 3.4 

would be proportional to the difference in the current flowing into A and the current 

flowing into B, divided by the sum of the two currents.  That is, )/()( BABAx +−∝  

where A and B are the currents flowing into the respective electrodes.  A similar relation 

holds for the vertical position between electrodes C and D. 

 

Figure 3.4: Components and arrangement of a Lateral Effect Detector 

sensor.  
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At first glance, this appears to be equivalent to the operation of the quad cell.  

However, when the energy within the intensity pattern is not concentrated on a single 

point, then a sensor of this sort will produce a result based on a weighted-average 

centroid of the form,  
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with a similar relationship for position in y.  Since each point on the sensing area of the 

detector effectively acts as a separate sensor, this type of sensor is not as susceptible to 

considerations of pattern size or larger pattern shifts as the quad cell. 

These different definitions of the center of an irradiance pattern are all quite valid, 

just as they different definitions of tilt in section 3.2.1 are valid.  However, they are 

different, and if one does not keep those differences in mind, then that can lead to 

problems in trying to deal with tilt. 

As tilt is primarily of interest in aligning the far-field intensity pattern on a target, 

a look at the far-field pattern is instructive.  Figure 3.5 shows far-field intensity patterns 

for the sinusoidal wavefront in Fig. 3.2, with a peak-to-valley phase variance of 0.8π 

radians.  The solid vertical line in Fig. 3.5 (a) indicates the location of the far-field 

intensity pattern’s centroid, as found with a weighted average of the form in Eq. 3.7.   

The dashed vertical line in Fig. 3.5 (a) indicates the point corresponding to a quad cell 

definition of center, at which the total intensity to the left of that point (ΣIx-) equals the 

total intensity to the right of that point (ΣIx+).   
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Figure 3.5: A far-field irradiance pattern based on a sinusoidal wavefront 

(a) and this pattern if the wavefront is corrected according to Z-tilt.  

As can be seen in Fig. 3.5, the locations of these two definitions of the center are 

not equivalent.  The centroid definition of centering the pattern is at x = 0, which 

indicates there was no tilt in the original wavefront and agrees with earlier evaluation of 

G-tilt for the wavefront in Fig. 3.2.  On the other hand, Fig. 3.5 (b) shows the far field for 

a wavefront with tilt calculated according to the Z-tilt definition and removed.  

Performing T/T correction based on this definition of tilt shifts the far-field pattern so that 

the center point according to the quad cell definition of center is placed near x = 0.  

Interestingly, this also places the point of highest intensity in the far field closer to x = 0.   

Increasingly, arrays of charge-coupled device (CCD) photosensors, of the sort that 

serve as the basis for most digital cameras, have been used as position sensors.
1
  Each 

pixel in the array produces a signal or digital value proportional to the irradiance falling 

on that sensor.  If a far-field pattern falls across several pixels of the array, then a 

weighted average centroid can be found through numerical integration approximating Eq. 

3.7.  If the size of the pattern is on the order of one or two cells across, then a set of four 
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pixels in a square pattern can be used as a quad cell.  Larger blocks of pixels can be used 

as the equivalent of larger quad cells, but it is rare to do so if enough pixels are involved 

to make centroiding a viable option.   

A limitation of CCD array centroiding is that spatial and temporal resolutions 

become factors in this form of sensor.  Properly approximating Eq. 3.7 requires pixels 

small enough to resolve relevant features in the far-field pattern and enough pixels to 

encompass the pattern, including spreading and wandering of the pattern due to 

aberrations.  As noted, four pixels that are larger than or on the order of the pattern size 

can be used in the manner of a quad-cell, but as it has also been noted, quad-cells and 

centroiding sensors have different definitions of tilt.  The use of pixels of intermediate 

size will produce measured values of tilt that do not properly correspond to either Z-tilt or 

G-tilt, but are likely to lie somewhere between the two.   

Quad cells and lateral effect detectors output only four signals.  Those four signals 

are reduced to two values for tilt in x and y through operations of addition, subtraction, 

and division that are simple enough to be carried out by analog circuitry.  Each pixel in a 

CCD outputs a separate signal that must be read and recorded in order to perform the 

calculations.  The computation to convert these values into T/T is also more involved 

than that for quad cells and lateral effect detectors.  The time required to read in all values 

and perform the computation can limit the sampling rate for a CCD-based sensor. 

Before leaving this discussion, it should be noted that recognition of the 

difference in G and Z-tilt and their ramifications to tilt correction were derived 

independently during work that will be described in chapter 8.  As presented here, the 

implications of tilt measurement and correction at first glance appear as only subtleties, 
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but in practice they have very real unintended consequences.  Through further study, it 

became apparent that G and Z-tilt are well-established phenomena and, in that sense, this 

discovery amounted to rediscovering the wheel.  However, in subsequent presentations of 

results at several national meetings, it became apparent that while the mathematical 

subtleties of the difference between G and Z-tilt were well established, the implications 

were not fully appreciated by many who work in this field. 

3.3. Wavefront Aberrations 

Tip-tilt is only one of the various types of aberration that were discussed and 

shown in chapter 2, section 2.3.2.  Tip-Tilt correction is based on an approximation of a 

wavefront as a flat surface, though the definitions for determining the slope of that 

surface may vary.  Other forms of aberration are associated with curves and inflections in 

a wavefront, and require higher-order polynomials or sums of trigonometric functions in 

order to properly express or approximate the form of that wavefront.   

The need for higher-order correction can be seen in Fig. 3.5 of the previous 

section.  Applying tilt correction in the near field, based on G-tilt or Z-tilt, may shift the 

location of the irradiance pattern in the far field, but it does not change the shape of that 

pattern.  In that example, Z-tilt correction does increase the intensity seen at the target or 

reception point of x = 0, but that intensity in that example is approximately 70% of what 

would be achieved in the diffraction-limited case, and that is close to the maximum 

intensity that may be found anywhere in this intensity pattern. 

As a further example, Fig. 3.6 (a) shows a simulated, one-dimensional wavefront 

in the form of part of a sine wave across an aperture.  This wavefront has a noticeable 



 

59 

degree of both G-tilt and Z-tilt, along with curves and inflection points.  Results of 

correction of these forms of tilt are also shown in this figure.  The far-field irradiance 

pattern for the uncorrected wavefront is shown in Fig. 3.6 (b), compared to the 

diffraction-limited ideal for an aperture of this size.   

 

Figure 3.6: (a) A simulated wavefront, with corrections. (b) Uncorrected 

and diffraction limited far-field patterns.  (c) Far-field patterns with 

various types of tilt correction.  

Figure 3.6 (c), shows the far-field patterns associated with the T/T corrected 

wavefronts.  As was the case in Fig. 3.5, T/T correction may shift the position of the 
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irradiance pattern, but it can not change the shape of the far-field pattern.  G-tilt 

correction improves the Strehl ratio from 0.56 to 0.88, while Z-tilt correction raises it to 

0.96.  However, neither form of correction can raise it to the ideal of one, because they 

can not recover energy scattered or diverted into side-lobes.  Only higher-order correction 

to remove the residual distortions that remain after T/T can do this. 

3.3.1. Higher-Order Wavefront Measurements 

There does not seem to be the same conflict in defining higher-order wavefront 

distortions that exits for G-tilt and Z-tilt in T/T correction, though the magnitude of 

higher-order distortions can be expressed in a number of different ways, such as OPD or 

phase variance.  However, there are multiple approaches to measuring the form of a 

wavefront.  The choice of approach and design of these sensors is usually driven by 

considerations of cost, reliably, ease of use, dynamic range, and resolution.   

Resolution, in this case, applies not only to spatial resolution for resolving the 

finer-scale variations, but also to temporal resolution in the form of sampling rates and 

processing time.  Real-time AO correction requires that the measured and reconstructed 

form of a wavefront be available before changing conditions or evolving flow renders the 

data obsolete.  Wavefront sensors tend to have lower frequency limits than T/T sensors, 

because there is more information to deal with and that data may require substantial 

processing to produce a map of a wavefront. 

Among the methods for wavefront measurement are: curvature sensors, double-

slit sensors, and various forms of interferometry.  Information on these techniques may 

be found in other sources,
6,7,8

 but the work described in this dissertation was performed 
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primarily with Malley probes, which are in turn based on Shack-Hartman sensors.  Both 

are based on Huygens’ Principle, which was as addressed in section 2.2.2.  Specifically, 

they are based on the idea behind this principle that a wavefront can be replaced by a set 

of point sources along its surface.
9
  As previously mentioned, this leads to the result that 

wavefronts propagate normal to themselves and that the angle of a ray that is part of a 

wavefront will correspond to the slope of the wavefront at that point.   

The difference between the two is that a Shack-Hartman sensor can be considered 

a wavefront sensor in that it takes a “picture” of a wavefront at a given time by sampling 

that wavefront over several locations at the same moment in time.  The Malley probe is a 

technique for reconstructing a wavefront from only two, closely-spaced measurement 

locations aligned in the direction in which the aberrating flow structures are moving.  

Based on a set of assumptions about the behavior and development of the flow producing 

the wavefront aberrations, it extrapolates information about the wavefront at a given time 

to locations other than the points of measurement, based on data from earlier or later 

points in time.  Another way of saying it is that it measures the slope of the wavefront as 

it convects with the flow structures past the measurement location. 

3.3.2. Shack-Hartman Sensors 

Hartmann was the first to realize that Huygens’ Principle could be used to 

measure the figure of wavefronts.
10

  He placed an opaque, perforated plate in front of the 

aberrated wavefront with a photographic plate at a known distance from the perforated 

plate.  By exposing the photographic plate first to an unaberrated beam and then to the 

aberrated beam he was able to measure the off-axis displacement of beams emerging 
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from the perforations.  Knowing the distance between the perforated and photographic 

plates he could determine the deflection angles and thus the wavefront slopes at each 

perforation.  With a spatially sampled measurement of the slopes, an approximation of 

the wavefront can be reconstructed by integration of these slopes. 

A Shack-Hartman sensor, as shown in Fig. 3.7, uses lenses rather than pinholes, 

focusing the light to a point, or at least to a relatively small representation of the far-field 

irradiance pattern.  The displacement of this point or of the centroid of the pattern is an 

indicator of the average slope of the wavefront over the area of the lens.  Many wavefront 

sensors of this sort use CCD arrays and centroiding routines of the area under the lenslets 

or a set of position sensors (of the sort addressed in section 3.2.2), rather than the 

photographic plate used in the original Hartman sensor.   

 

Figure 3.7: A Shack-Hartman sensor.  

The deflection angle (θ) can be found from the displacement (d) of the bright spot or 

centroid by Eq. 3.6 on page 52, with L in that equation corresponding to the distance 

from the perforated plate to the photographic plate in the case of the Hartman sensor, or 

the focal length of the lenses in the case of a Shack-Hartman sensor.  The approximations 

in Eq. 3.6 only apply if α is relatively small, but that is frequently the case. 
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As previously noted, the deflection angle of a ray or narrow beam sampled from a 

wavefront corresponds to the slope at that point of the wavefront, and to the negative of 

the slope of the OPD as the conjugate of the wavefront. 
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From this it would seem that the form of the wavefront could be reconstructed by  

 ∫−= dxtxtxOPD ),(),( θ . (3.9) 

However, θ(x,t) can not be measured for every point.  With a spacing between 

measurement points of ∆x, Eq. 3.9 may be approximated in the form 
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As OPD is, by definition, a quantity with zero mean, that property determines the initial 

value of OPD(x0,t) in the summation above.  Rather than performing the summation as an 

infinite value problem which can accumulate errors, many two-dimensional Hartman-

type sensors a surface is fitted to the array of slopes using some form of least-squares 

sense approach. 

3.3.3. Malley Probes 

A Malley probe is based upon the same principles as a Hartman sensor, but also 

takes advantage of some aspects of a flow in motion.  Malley et. al. were the first to 

recognize that when the aberrating medium is a turbulent flow, the aberrations caused by 

the convecting flow structures will convect as well.
11

  Thus, a single beam propagated 

through the flow could be used to measure a continuous time series of wavefront slopes 

as the wavefront convects by the measurement location.   
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The Malley principle has been used at Notre Dame to develop a series of 

wavefront-measurement devices.
12,13,14

  To the extent that the flow can be treated as 

slowly varying, the Taylor frozen flow assumption can be used to compute wavefronts up 

and downstream of the measurement location, which are reasonably accurate for some 

distance up and downstream.  By propagating two small-diameter, closely-spaced, beams 

through the flow, both the wavefronts slope and its convection speed can be determined. 

If the velocity at which the sources of aberration are convecting (UC) is known, 

then at some later time, (t + ∆t) that portion of the flow will be some distance 

downstream, (x + ∆x) such that 
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If the times and distances of convection are sufficiently small that the structures in the 

flow do not change significantly over that period, then it may be assumed that an optical 

deflection angle measured at position x and time t will be close to the deflection angle 

that would be measured at position x + ∆x and time t + ∆t.  Therefore,   
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By this assumption, a time-series of deflection angle measurements can be used to 

reconstruct the wavefront upstream and downstream of a single measurement point.  In 

this reconstruction around a measurement point x0, Eq. 3.9 becomes 

 ∫−= dtUtxtxOPD C),(),( θ . (3.14) 
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and Eq. 3.10 becomes 

 ∑
−
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The advantage of a Malley probe is that it turns temporal resolution into spatial 

resolution, allowing for the resolution of fine detail through a high sampling rate rather 

than by adding more sensors.  Malley probes have additional advantages in some cases of 

implementation and accessing a flow.  This technique is originally based on the principles 

behind a Hartman sensor, in which a localized portion of continuous wavefront is 

sampled in the form of a narrow beam.  However, only the deflection of the narrow beam 

actually matters in performing the measurement and reconstruction.  It is possible to do 

away with the full wavefront from which the beams would be sampled, and simply 

generate a set of narrow beams that can be directed through the flow.  The deflection of 

narrow beams of this sort remains the same, whether they were originally part of a larger 

wavefront or not.  Therefore, they can be used to reconstruct the aberrations that would 

be imposed on a full wavefront passing through that flow, whether or not a continuous 

wavefront was actually involved in making the measurement. 

Producing a full wavefront over an area of measurement often requires expanding 

and collimating a beam without inducing any aberrations into the beam in the process.  It 

also requires that the original beam have sufficient power so that every point in the 

expanded beam and wavefront that might be sampled will have sufficient irradiance to 

perform the measurement.  Producing a set of narrow, isolated beams requires less 

specialized equipment and less overall power.  Additionally, some experimental 

conditions, such as the ones that will be described in chapters 5 and 7, do not have full 
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optical access for passing a beam of the desired dimensions through the flow, but the 

Malley probe technique can be used to extrapolate upstream and downstream into regions 

that can not be measured directly.  

If UC is not known from the characteristics of the flow, then it can be determined 

by a comparison of the data from two closely spaced beams, one upstream of the other.
15

  

As illustrated in Fig. 3.8, the source of aberration encountering the first beam at time t 

should encounter the second beam at time t + ∆t.  A cross-correlation of the deflections 

measured at each beam should provide an indication of the time required for a 

disturbance to travel from the location of the upstream beam to that of the second beam.  

The ratio of this travel time and the spacing between the beams indicates UC by Eq. 3.11, 

which can then be used to perform the wavefront reconstruction of Eq. 3.15. 

 

Figure 3.8: Indications of convective velocity from Malley probe 

measurements.  

The use of multiple measurement locations along a streamline also allows for 

another approach in increasing the spatial resolution.  Eq. 3.15 is intended for the 

reconstruction of a wavefront from the deflection data of a single beam, but the data from 

multiple beams can be combined.  If there are two beams at positions x1 and x2, then at a 

point x3, Eq. 3.11 indicates that the deflection angle that would be measured at that point 
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at time t should correspond to the deflection angle measured at x1 at time t – UC (x3 – x1).  

It also indicates that it should correspond to the deflection angle measured at x2 at time t – 

UC (x3 – x2). If x3 is located between x1 and x2, then it is reasonable to employ an average 

of these two values.  It is even more effective to employ a weighted average to reflect the 

position between the other two points.  Thus, if the indicated deflection angles by 

extrapolation from x1 and x2 are θ1 and θ2 respectively.  Then the value of θ3 at x3 can be 

extrapolated as  
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These averaged, extrapolated values can be produced for any and all positions 

between x1 and x2, and then used in the wavefront reconstruction of Eq. 3.15.  The use of 

multiple beams and this averaging scheme is known as the Small Aperture Beam 

Technique (SABT).
16

  Both the Malley probe and the SABT can be expanded to three or 

more beams. 

3.4. Applying Correction 

Goal of this work is to advance not only the theoretical understanding of optical 

aberrations, but the engineering capability to deal with those aberrations.  Thus, a review 

of methods for counteracting these optical distortions is necessary for proper 

understanding of the problem. 
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3.4.1. Tip-Tilt Correction 

As discussed in section 3.2 Tip-Tilt (T/T) is a net deflection of a beam.  

Therefore, in order to counteract unwanted deflection, an opposing deflection of equal 

magnitude and opposing direction must be imposed on the beam.  The most common 

approach is the use of a steering mirror more often referred to as a fast steering mirror or 

FSM.  FSM’s are generally made by attaching a flat mirror to actuators of some sort that 

can change the angle of the mirror.  The beam to be corrected is directed onto the mirror, 

and the mirror is angled so that the reflection is directed onto the desired axis of 

propagation.    

There are other possible approaches, such as the Risley prism pair, which uses a 

set of prisms to deflect the beam.  There are potential advantages and drawbacks to many 

of these approaches, but the FSM approach is probably more common simply because 

tipping and tilting a mirror to counter T/T in a beam is a more intuitively obvious 

solution. 

The Notre Dame system shown in Fig. 3.1 uses a quad cell and FSM for 

correction.  An enlargement of this portion of the system is shown again in Fig. 3.9.  The 

control loop between the FSM and the quad cell is an analog system that stands entirely 

separate from other corrective measures.  The incoming beam is focused onto the quad 

cell with a lens, which produces an irradiance pattern on the sensor in the form of a small 

far-field spot.  If the pattern is not centered on the quad cell, then the signals to the FSM 

are adjusted accordingly.  Provided changes in the T/T component of the aberrations do 

not exceed the bandwidth for the control loop, the beam passed on for higher-order 

correction will be centered according to the quad cell definition of centered.  As was 
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shown in Fig. 3.5 on page 56, this should correspond reasonably closely to the wavefront 

being corrected according to the Z-tilt definition of tilt. 

 

Figure 3.9: A schematic of the T/T corrective system within the ND AO 

system. 

3.4.2. Higher-Order Correction 

Most forms of higher-order correction rely on some form of phase conjugation.  

Something is used to impose aberrations on a wavefront that are equal but opposite to the 

aberrations from other sources.  This can be done before or after the other aberrations 

occur.  In either case performing phase conjugation requires some means of detecting 

those aberrations.  Providing this correction beforehand requires foreknowledge of the 

type and form of aberration that will be encountered.  If the conjugation takes place after 

propagation through the aberrating medium then the distorted beam itself can be used to 

measure the aberrations.  If the conjugation is performed before propagation and 

incoming beam is required which can be produced from target glint or guidestars,
17,18

 but 

this is beyond the scope of this dissertation. 
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Focus and defocus aberrations are something of a special case, in that they can be 

corrected with lenses.  A defocus aberration indicates that the wavefront has some net 

spherical curvature, causing the rays making up a beam to spread or converge.  If a lens is 

placed in the path of a beam so that the spreading rays can be traced back to a point at the 

focal length of the lens, then the beam will be collimated thereafter. Alternately if the 

goal is to focus the wavefront at a finite distance, rather than at infinity as for a 

collimated beam, this too can be accomplished with one or more lenses.  Focused 

(converging) beams can be dealt with similar manner with a concave lens, or by placing a 

convex lens at some point after the converging rays have come to a focus, and the focus 

aberration becomes a defocus aberration.  The act of focusing a camera or telescope can 

be considered a sort of AO system in operation.  Orientation of the camera counteracts 

tip-tilt while adjusting the distance of one or more lenses deals with focus.  However, tilt 

and focus are the simplest forms of aberration seen in wavefronts.  For more complex 

shapes, especially in time-varying systems, a more adaptable means of correction is 

required.  One of the most commonly used forms of higher-order correction is a 

deformable mirror (DM) with a surface that can be altered into a variety of contours. 

Figure. 3.10 shows three sketched illustrations of an aberrated wavefront 

reflecting from mirrors with different surface contours.  In 3.10 (a) the mirror is flat and 

the phase variation in the direction of propagation remains unchanged, though the left-

right orientations relative to this vector have been swapped, as is standard for reflection.   
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Figure 3.10: (a) flat mirror reflections, (b) shaped mirror conjugate 

reflection, (c) half-magnitude shaped mirror correction.  

In 3.10 (b) the mirror has been deformed to match the shape as of the incoming 

wavefront and the reflected wavefront now leads where the incoming wavefront lagged 

and vice-versa.  In terms of OPD(x) or other mean-removed indicators of the variations 

the outgoing wavefront is the conjugate of the incoming wavefront. (-OPD(x)Incoming = 

OPD(x)Outgoing).   

This result is very useful if the outgoing light is to transverse the same path as the 

incoming light.  As noted in chapter 2, OPL corresponds to an integral of n along a path. 

(Eq. 2.3) This integral is along the length of the path, and the direction of the path does 

not matter.  Thus, the resulting OPL is the same for either direction along the same path.  

Sending a conjugated wavefront of the sort seen in Fig. 3.10 (b) back through the path 

that produced the original variations will produce a cancellation of these variations, 

resulting in a planar wavefront as the light returns to its point of origin. 

Fig. 3.10 (c) shows a case halfway between (a) and (b).  The mirror is deformed 

to the same shape as the incoming wavefront, but the variations in the mirror are half the 
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magnitude of those seen in the wavefront.  This half-magnitude deformation produces a 

planar wavefront as a reflection.  This is the correction sought after in the Notre Dame 

AO system shown in Fig. 3.1.   

This sort of deformation and reflection can also be done in reverse, imposing 

aberrations on an incoming planar wave that will be twice the magnitude of the mirror 

deformations.  This is useful in predictive correction, in which the form of aberration that 

will be acquired along the beam path is measured by use of return glint, a guide star, or 

some other means.  If a conjugate of these expected deformations is placed on a 

wavefront before it is sent along the path, then those deformations will be canceled out as 

those sources of aberration are encountered. 

This explanation of higher-order correction by a reflective surface that changes 

shape is the approach used in the ND AO system and in many other corrective systems.
1
  

Some other AO systems use special properties of materials in which n can be made to 

vary.
19

  A commonly used form of this involves electro-optic materials, in which n is a 

function of the local electrical field; this is known as the Pockels effect if ∆n is 

proportional to the magnitude of the electrical field, or the Kerr effect for variations 

proportional to the square of the field strength.
20

  Controlled variations in n across a 

wavefront can be achieved by passing the light through a window comprised of several 

individually controllable pixels of such material.  By this means, n can be increased for 

leading portions of a wavefront, slowing them relative to other sections of a wavefront 

and to even out variations.  Whether it is possible to decrease n to speed up lagging 

portions of the wavefront depends on whether the material is governed by the Pockels or 

Kerr effect.  
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The ND AO system uses a deformable mirror (DM) produced by Xinetics in the 

form of a reflective membrane (referred to as a phase sheet) mounted on an array of 

piezoelectric posts.  As different levels of voltage are applied to these posts, they expand 

or contract, pushing the surface of the mirror outward or pulling it inward.  A computer-

generated representation of this DM is shown in Fig. 3.11.  It should be noted that the 

dimensions of the posts and magnitude of the deformations in the mirror are not to scale 

in this representation, but it is presented here to convey the general idea of how this 

device works; in fact, the displacements of the actual mirror are limited to approximately 

± 4 µm.  

 

Figure 3.11: A model of the Xinetics deformable mirror. 

The operating principles of this system prompted the choice of Z-tilt over G-tilt 

for T/T correction.  Removing Z-tilt, as defined in Eqs. 3.2 and 3.4, minimizes the rms 

magnitude of higher-order variations within the wavefront (see Figs. 3.2 and 3.6) which 

minimizes the degree of motion required from the piezoelectric actuators driving the 

mirror.  Any physical AO system will have actuators with a limited degree of motion and 

some time required to reach a desired position or configuration.  This is also true of 
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systems based on electro-optic materials which do not move but will still have a limited 

range of values of n that can be reached and some delay in reaching them.  Thus, 

applying Z-tilt correction before higher-order correction is generally the best choice for 

keeping the remaining distortions within the achievable range of the higher-order system 

and minimizing the time required for higher-order correction.   

This is also a motivation for performing T/T correction separately.  The Xinetics 

DM and other higher-order correctors can provide T/T correction at the same time as they 

perform higher-order correction; however, doing so would require a larger range of 

motion in the actuators, and might make greater demands on the speed of those actuators 

in changing position.  Implementing a separate, simpler system for T/T correction also 

saves cost, as a greater range of motion or speed in a higher-order corrective system 

generally makes for a more expensive system. 

3.5. Concerns and Limitations of Correction 

In practice, perfect correction is not possible because that correction must be 

carried out by physical and electronic systems with limitations.  Some of these concerns 

were mentioned in passing in previous sections of this chapter, but a more in-depth 

exploration is worthwhile.  These limitations will be of particular relevance in chapters 8 

and 9 which address the results and applications of the work described in this 

dissertation.  
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3.5.1. Spatial Resolution 

Wavefronts are continuous sheets, containing an infinite number of definable 

locations within a finite area.  Each and every point of a wavefront will have some value 

of phase and OPD.  Systems to measure and correct wavefronts are made up of a finite 

number of components.  Therefore, it is not possible to achieve perfect resolution of 

every point in measuring a wavefront, nor can correction be perfectly applied to every 

point.  To illustrate this, a simplified example in one dimension will be used, involving a 

Shack-Hartman sensor and deformable mirror.   

Figure 3.12 shows the simulated wavefront to be used in this example, which is 

produced by the summation of three sine waves of random phase with periods equal to 

the aperture length, one-half the aperture length, and one third of the aperture length.  The 

actual magnitudes of the aperture and wavefront aberrations are irrelevant for this 

example so the units are left undefined. 

 

Figure 3.12: A simulated wavefront produced by summation of sine 

waves. 
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Figure 3.13 shows the results of a simulated detection and reconstruction of this 

wavefront by a Shack-Hartman sensor as described in section 3.3.2.  Specifically, the 

aperture was divided into sections, the slope in each section was found by the G-tilt 

definition of slope, and then reconstruction by Eq. 3.10 from page 63.  The reconstruction 

with four sensors over the aperture captures some aspects of the overall shape of this 

wavefront, but completely misses certain prominent features of the wavefront.  The 

reconstruction with six sensors at least suggests the existence of these features, even if it 

is not a particularly good fit to those features and still misses some of the minor features. 

 

Figure 3.13: Simulated Shack-Hartman reconstruction. 

These results are not surprising.  It has long been established that resolving a 

signal or waveform via periodic sampling requires a minimum of two sampled data 

points per period of the waveform or features to be resolved, i.e., the Nyquist frequency.  

The simulated wavefront of this example contains a sine wave with three periods within 

the aperture shown.  Therefore, a minimum of six points or regions of measurement is 
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necessary to meet this requirement.  Using fewer data points than this minimum tends to 

produce aliasing, as the higher-frequency components of the waveform are either lost 

entirely, or misinterpreted as lower-frequency aspects.   

Figure 3.14 shows the results of using an increasing number of sensors to divide 

the aperture into a greater number of smaller sections for this measurement and 

reconstruction.  With nine or twelve sensors, the major features of the wavefront become 

more recognizable and the lesser features are at least hinted at if not fully resolved.  As 

Figs. 3.13 and 3.14, show, meeting the minimum of the Nyquist frequency does not 

necessarily constitute a “good fit” depending on the requirements of a given application; 

however, the Nyquist frequency does serve as an indicator for an absolute minimum that 

will be needed. 

 

Figure 3.14: Simulated Shack-Hartman reconstruction. 

Just as a finite number of sensors limits the ability to accurately measure and 

reconstruct a wavefront, so does a limited number of degrees of freedom in the corrective 
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mechanism limit the ability to apply correction.  Figure 3.15 (a) shows the simulated 

wavefront from Fig. 3.12 with approximations of this wavefront by least-squares fitting 

of various polynomials.  The order of the polynomial in the fit corresponds to the number 

of degrees of freedom in the corrective mechanism.  For a deformable mirror as described 

in section 3.4.2, this would be determined by the number of actuators driving the mirror.  

Polynomials of order 4, 6, 9, and 12 have been used to reflect the number of sensors used 

in the preceding example and the curves necessary to match those reconstructions.   

 

Figure 3.15: (a) 4
th

, 6
th

, 9
th

, and 12
th

 order polynomial fits to the simulated 

wavefront. (b) Residual wavefront after correction according to the 

polynomial fits of (a). 

The 12
th

 order polynomial matches the wavefront to the degree that it overlies the curve 

of the wavefront in the figure and can not be seen.  However, the polynomials of lesser 

order have a visible degree of fitting error because they do not have sufficient degrees of 

freedom to match the form of the simulated wavefront.  The results of correction based 

on these fits are shown in 3.15 (b), with decreasing amplitude of the residual wavefront 

with increasing order of the fit, and correction by a 12
th

 order fit leaves almost no 

deviations at all remaining within the corrected wavefront. 
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It should be noted that these fits are performed to the wavefront itself, with 

perfect knowledge of that wavefront at every point.  Figure 3.16 (a) shows the results of a 

12
th

 order polynomial fit to the 12-sensor reconstruction of Fig. 3.14.  The errors inherent 

in the reconstruction from limited data are passed on to the polynomial fit.  The 

deviations seen in the residual wavefront after correction based on this reconstruction, 

shown in Fig. 3.16 (b), are on the order of those seen for the 9
th

 order fit that was 

performed with perfect knowledge of the wavefront. 

 

Figure 3.16: (a) A 12
th

 order polynomial fit to the 12-sensor reconstruction 

of the wavefront. (b) Residual wavefront variations after correction by the 

reconstruction in (a). 

3.5.2. Temporal Resolution 

Just as there are limits to measuring a wavefront or applying perfect correction at 

every point in space, there are limits to doing so at every moment in time.  This is 

especially true for digital systems, which are discrete in time.  Thus, rather than a 

continuous correction, many systems provide correction that is updated periodically.  

During the interval between corrections, structures in a flow that produce aberrations will 

move and evolve, and a correction provided for conditions at one moment in time will 
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become less accurate as time goes by.  Analog systems, despite having continuous 

signals, are subject to a similar problem in the form of latency, which will be addressed in 

section 3.5.3. 

If the interval between periodic corrections is long enough relative to the rate of 

change in the aberrations observed, then those aberrations may change to the point that 

the corrective measures add to the distortion, rather than alleviating it.  For example, this 

dissertation has made extensive use of sine waves as aberrations in simulated wavefronts.  

If such an aberration were to be perfectly corrected at a point in time, but that correction 

were to remain frozen as the aberration convected across an aperture, then eventually the 

aberration would reach a point of being π radians out of phase with the correction.  At 

that point, instead of canceling out the aberration, the correction would add to it, doubling 

its amplitude.   

Figure 3.17 (a) shows a plot of a simulated corrected wavefront over an aperture, 

as it develops in time.  The simulated wavefront is a sine wave with a period equal to 

twice the length of the aperture.  This aberration moves across the aperture with time, 

completing one cycle of motion over the period of time shown.  This aberration is 

corrected four times over this cycle, visible as the points at which the aberration suddenly 

disappears and the wavefront becomes a flat line.  In generating these figures, a perfect 

correction for the wavefront at the moment of correction was assumed, without any of the 

uncertainty or fitting error described in the previous section.   
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Figure 3.17: Time evolution of periodic correction, (a) near-field phase, 

(b) far-field irradiance. 

Figure 3.17 (b) shows the time-varying far-field pattern produced by these near-

field wavefronts.  As can be seen, the far-field pattern achieves the diffraction-limited 

ideal at the times of correction but the high center lobe of the pattern degrades and shifts 

from side to side over the interval between these corrections. 

Figure 3.18 repeats this process, but for an aberration of the same magnitude but 

half the length scale.  This aberration convects at the same speed as in the previous 

example, but completes two cycles instead of one over the same interval of time.  For the 

same frequency of correction, the aberration and far-field distortions have time to grow 

noticeably worse than they did in the previous example.  This is because the same 

interval in time corresponds to a greater degree of motion relative to the shorter length 

scale of the features in this simulated wavefront. 
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Figure 3.18: Time evolution of periodic correction, (a) near-field phase, 

(b) far-field irradiance. 

Figure 3.19 shows the Strehl ratio of Figs 3.17 (b) and 3.18 (b) as functions of 

time.  As is to be expected from the previous figures, the Strehl ratio is lower on average 

for the aberration with the shorter period and reaches lower minimums.  In 

communications applications, these minimums may be a more accurate gauge of system 

performance than the average Strehl ratio, as even a temporary loss of signal is often 

unacceptable. 

 

Figure 3.19: Time varying Strehl ratios for periodic correction. 
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3.5.3. Latency 

Latency refers to a delay in applying the correction.  In feedback loops, some 

degree of latency is almost unavoidable, as signals within the system do not reach their 

destinations instantaneously.  Likewise, actuators can not traverse with infinite velocity 

and require some time to reach a specified position.  In analog systems, there may be 

transient effects associated with some of the components, which take time to settle.  

Digital systems must interface with such analog components, and computing the proper 

response to the measured conditions requires some processing time.   

 The manner in which latency can limit and impair a corrective system is similar 

to the way in which the periodic corrections addressed in the previous section do so.  A 

perfect correction for a wavefront at time t is not so perfect at time t+∆t and becomes 

increasingly less perfect with larger values of ∆t.  The difference is that instead of 

starting out with a good or perfect correction at ∆t = 0 that degrades over time in the 

interval between corrections, the delayed correction associated with latency is always late 

by some fixed interval of ∆t relative to the conditions the correction is meant for.  Thus, 

the degree of error associated with latency tends to be a relatively steady value, rather 

than the cycles shown in Figs. 3.17, 3.18, and 3.19.   

If the interval ∆t is of significant duration relative to the rate of change for 

features in the distortions to be corrected, then applying this correction may increase the 

overall distortion instead of lessening it.  Using the sine-shaped simulated wavefronts of 

the previous section as examples, the worst-case scenario would be a time delay in 

applying the correction corresponding to the time associated with the distortions in the 

wavefront moving a distance equal to half their period.  Under those conditions the 
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correction would be 180
ο
 out of phase with the distortions to be corrected, which would 

double the magnitude of those distortions rather than removing them. 

This effect of latency is well known in the field of feedback control.  A common 

technique for design of such systems is Bode analysis, which plots the response of a 

system in terms of relative magnitude and phase delay of the output as functions of the 

frequency of the input to the system.  In this analysis, systems are considered to be 

unstable if they amplify signals of frequencies associated with phase delays of 180
ο
 or 

more. 

3.5.4. Combined Effects 

It is very rare for any system to have only one of the limitations above.  Any 

physical system will have some limitations in the resolution of measuring a wavefront, 

limits in matching the form of the wavefront in applying correction, and some non-zero 

time delay in applying that correction.  As such the net phase variance of a wavefront 

remaining after correction (σr
2
) will be comprised of errors produced in measuring the 

wavefront ( 2

)(measrσ ), fitting the wavefront ( 2

)( fitrσ ), and temporal effects such as periodic 

correction and latency ( 2

)(temprσ ), so that 

 2

)(

2

)(

2

)(

2

temprfitrmeasrr σσσσ ++= . (3.17) 

Other sources of error may also be included in this equation, though it should be noted 

that this assumes the sources of error in this summation are independent of each other.  

The question is whether the magnitude of these errors and delays is significant relative to 

the needs of the application and the conditions encountered.   
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CHAPTER 4:  

ATMOSPHERIC PROPAGATION 

4.1. Overview 

In communicating with the community of people concerned with turbulence-

induced aberrations on the figure of a laser-beam’s wavefront made to propagate through 

the turbulence, it has become clear that most fall into one of two camps; they are familiar 

with the physics and effects of propagation through either the atmosphere (atmospheric 

propagation) or with the equivalent properties of high-speed turbulent flows in the 

vicinity of the beam-director’s exit pupil (aero-optics). While the two propagation 

scenarios share the fact that the aberrations are imposed by index-of-refraction variations 

within the turbulence, little else about the characteristics and effects of these two types of 

fluid-optic interaction are the same.  

At the heart of the field of atmospheric propagation is a single parameter, Cn
2
, 

which has come to be the accepted standard in characterizing optical turbulence.  As will 

be addressed in this chapter, Cn
2
 depends on the turbulence being in the form described 

by Andrei Kolmogorov.  If the turbulence can be characterized as Kolmogorov, then this 

single parameter, Cn
2
, describes not only the scale size of the aberrating index-of-

refraction fluctuations, but also the magnitude of the aberration associated with them. 

Coupled with the velocity of the air normal to the optical path, all of the relevant optical 

parameters of the aberrating turbulence can be deterministically derived, including the 
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requirements for adaptive-optic mitigation systems.  Because of this, the focus of requests 

for research in aero-optics in the late 1980’s asked for determination of Cn
2
, for aero-

optic flows.  Unfortunately, pursuit of Cn
2
 as a characterizing parameter can easily 

become a goal in and of itself, without regard for whether the underlying assumptions 

that serve to define Cn
2
 are applicable to the conditions under consideration.  Because of 

this, a review of these assumptions and the fundamental definitions of Cn
2
 and other 

commonly used parameters will be beneficial to understanding of the aero-optical 

problem, and how it differs from the work already established for atmospheric 

propagation. 

4.2. Atmospheric Models 

To fully describe and predict the behavior, development, and variations of a flow, 

the Navier-Stokes equations are required.  In a three-dimensional flow, these consist of 

three momentum equations 
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where gi represents a body force, such as gravity, in the xi direction and τij represents the 

viscous stresses, which depend upon the nature of the fluid.  Air is a Newtonian fluid, for 

which 
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A fourth equation governs continuity of mass:  
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Dealing with and keeping track of variations in temperature requires an additional 

equation for continuity of energy: 
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where ET is the total energy defined by internal energy plus kinetic energy per unit mass 

and κ is the thermal diffusivity of the fluid.  For an ideal gas, the internal energy (e) is 

defined by the specific heat at constant volume (e = CvT), while the kinetic energy per 

unit mass is )( 2

3

2

2

2

12
1 UUU ++ for all gasses and fluids, ideal or otherwise.   

Pressure, temperature, density, and three components of velocity represent six 

unknowns in these five equations; therefore an additional equation is required for 

solutions, usually called the equation of state.  It is common to draw this equation from 

some variation of the ideal gas law or calorically perfect gas relations.  

For obvious reasons, these equations are usually written in a more condensed 

form of notation.  However, they are presented in full here to show just how complicated 

they can be.  Very little work is done utilizing the full equations as presented above.  
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Instead, most models, theories, and specific solutions are based on some simplification of 

these equations, which is often achieved by ignoring one or more factors.  A common 

approach is to treat the flow as incompressible, setting ρ to a constant. Without density 

variations, buoyancy ceases to be a factor, and body forces may be discarded.  This is 

often accompanied by ignoring temperature variations as well, eliminating the energy 

equation and equation of state from consideration, leaving a system of four equations and 

four unknowns: 
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for each axis, i =1, 2, or 3, and  
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This approximation has proven to be reasonably accurate for many engineering purposes.  

Solutions for the incompressible Navier-Stokes equations have been developed for many 

commonly encountered situations, along with various approaches to finding solutions. 

As was addressed in section 2.3, variations in the index of refraction (n) are 

directly tied to variations in density.  At first glance, this would appear to make the 

incompressible Navier-Stokes equations useless for optical problems.  However, it is 

possible to recover some relevant features of the flow by treating them as passive scalars.  

A passive scalar is a quality with a scalar value that may vary from point to point in the 

flow, is carried by the flow, and may spread by diffusion, but does not affect the behavior 

of the flow.  For example, when smoke or dye is injected into a flow for visualization, 

ideally it should be carried with the fluid without changing the dynamics of the fluid, and 
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the concentration of this marking material could then be considered a passive scalar.  The 

change over time of a passive scalar A at a fixed point is governed by the advection-

diffusion equation: 
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where κA is the diffusivity of the property A.  The diffusivity may be a constant or a 

function of some other property of the flow. 

In section 2.3, the relation between variations in n and variations in P and T was 

found to be 
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for conditions of standard atmosphere and light in the visible or near-visible range.  

While free atmosphere can often be modeled adequately as being only driven by pressure 

variations, as in the incompressible Navier-Stokes equations, steep pressure gradients 

dissipate at sonic speeds.  On the length scale associated with the diameter of a beam or 

viewing path in most applications, the dT term in Eq. 4.10 will tend to dominate the dP 

term. The small pressure fluctuations that are coupled to velocity variations in 

atmospheric turbulence have a low order impact on optical propagation compared to the 

effect of temperature fluctuations,
1
 even if those temperature fluctuations are not of 

sufficient magnitude to significantly affect the flow.  Thus, it is reasonable to assume that 

tracking and modeling T and variations in T as a passive scalar is an adequate means of 

tracking n and variations of n in free atmosphere flow.  This has proven to be the case in 

many studies, models, and applications.
2,3
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4.2.1. Turbulence as a Separate Quality 

In cases of atmospheric propagation, the length of the optical path may be on the 

order of kilometers or more.  On the other hand, the aspects of the flow that produce 

significant optical aberrations are often on the order of the beam or aperture diameter or 

smaller, and these diameters are often measured in meters or centimeters.  Finding an 

analytical or numerical solution that resolves the necessary small scale detail within a 

domain on the scale of the path length is rarely feasible.  Instead, it may be more practical 

to resolve the time-averaged qualities of the flow.   

A common approach of this type is to separate each property of the flow into 

mean and varying portions, such that iii uUU += , pPP += , and so on.  It should be 

noted that the averaging in this case, denoted by , is not a time average, but an 

ensemble average, as if running the same experiment multiple times. Thus, U  

represents the average of the realized flows at a point in space and can change with time 

while u represents the deviation from this mean in a particular case.  Inserting these 

modifications into the incompressible Navier-Stokes equations (Eqs. 4.7 and 4.8) and 

taking another ensemble average of the result leads to what are known as the Reynolds-

Averaged Navier-Stokes (RANS) Equations 
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and 
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The terms dealing with the varying components in Eq. 4.11 are known as the 

Reynolds stresses, and may be written as ijji Ruu =ρ .  Despite the name, these are not 

actually stress terms but instead represent the average momentum flux due to turbulence, 

though they do have a similar effect on a flow as a stress tensor.  When i = j, the 

Reynolds stress corresponds to twice the average kinetic energy associated with the 

turbulent velocity in the xi direction per unit volume:  
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2
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The sum of the squared velocity components along all three axes is often used as an 

indicator of the average turbulence kinetic energy (TKE) and used as an indicator of the 

strength of the turbulence: 
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The incompressible Navier-Stokes equations (Eqs. 4.7 and 4.8) can be reapplied 

to the turbulent velocities to find an equation for the change and motion of this kinetic 

energy: 
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Equation 4.15 is broken into several parts not only because of its length, but because each 

of the labeled sections corresponds to a different mechanism or aspect of the turbulent 

activity.  Part (a) is, of course, the change in turbulent energy with respect to time at a 

fixed point.  Part (b) is the convection of that energy with the mean flow.  Part (c) is the 

production of turbulent energy through interaction with the mean flow.  Part (d) is the 

advection of turbulent energy through turbulent mixing.  Part (e) is the transfer of 

turbulence through pressure fluctuations, while part (f) contains viscous effects of 

dissipation and diffusion.  

A problem with dealing with these equations of turbulence is one of closure.  

Between the variables for the mean flow and those for the turbulence, there are not 

enough equations to find solutions for all the variables.  Additionally, introducing the 

mean and turbulent properties as separate quantities is a significant step backwards in 
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simplifying the equations.  In order to reduce the process of solving the equations and of 

performing numerical simulations to a manageable level, further simplifying assumptions 

are needed. 

A common set of simplifying assumption applied to turbulence are that it is 

homogeneous and isotropic.  Homogeneity indicates the average magnitude and behavior 

of the turbulent velocities are the same everywhere in space, so that ui may be a function 

of position in a particular realization of the flow, but the ensemble average, iu , is not.  

This also applies to Rij, and 2q .  Isotropy includes the property of homogeneity and 

indicates the properties of the turbulence do not change with orientation, so that R11 = R22 

= R33 for any set of axes with equal scales and Rij = Rkl for all i ≠ j and k ≠ l.  This 

assumption has some justification from the equations alone, as parts (d) and (e) in Eq. 

4.15 serve to spread turbulent energy and activity from areas of higher concentration to 

areas of less intense turbulence.  Part (f) also does this, as well as transferring turbulent 

energy between axes of orientation.   

Applying this assumption causes most terms containing a derivative in a spatial 

dimension of a turbulent quantity to go to zero.  In Eq. 4.11, the mean flow becomes 

uncoupled from the turbulent flow.  The uniform-intensity turbulent flow has no effect on 

the mean flow, though the mean flow can still play a role in production of turbulence.  

Equation 4.15 is greatly simplified by this assumption as all the terms involving 

convection, advection, or diffusion of the turbulent energy go to zero, leaving: 
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The right-hand side of Eq. 4.16 consists of two terms, one relating to the production of 

turbulent energy through interaction with the main flow, and one for the viscous 

dissipation of that energy.  The viscous dissipation term is sometimes called ε .   

4.2.2. Spectral Analysis of Turbulence 

Central to many discussions of turbulence are correlation functions.  For two 

points, x =(x1,x2,x3) and 'x =(x1’,x2’,x3’), and a property A, this is defined 

as ( ) ( ) ( )xAxAxxB ′=′
rrrr

, .  The most common correlation to focus on is a correlation of 

the turbulent velocities, which may include velocities in different directions and also may 

be a function of time, 

 ( ) ( ) ( )txutxutxxB jiij ,',,', = . (4.17) 

In the case of homogeneous turbulence, the location of the points x  and 'x  becomes 

irrelevant, only the vector from one to the other matters: 
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 xxr −= ' , (4.18) 

 ),(),(),( trxutxutrB jiij += . (4.19) 

In isotropic turbulence, the orientation of the vector r has no bearing on the value of Bij, 

only the magnitude, (r = | r |) which reflects the distance between two arbitrary points. 

Correlation functions tend to have their maximum value when the distance of 

separation is zero, the two points are the same, and   

 ),(),(),0( txutxutB jiij = . (4.20) 

For small magnitudes of r , the flow at one point will be linked to the flow observed at the 

other, but there are likely to be differences in behavior as well.  As the separation 

distance increases, the link between one point and the other becomes more tenuous and is 

increasingly overwhelmed by the effects from the flow at points other than the two in 

question.  Thus, correlation functions approach zero as distance approaches infinity, often 

swiftly enough that they become effectively zero within a finite distance.  It is common 

practice to assume correlations functions are Gaussian in shape, as this produces results 

in accordance with the observed power-law behavior described later in section 4.2.3. 

Spectral functions are then defined as the Fourier transform of the correlation 

functions.  In non-isotropic flows, this should be a three-dimensional transform of the 

form: 

 ∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

−=Φ rdetrBtk rki

ijij

3

3
),(

8

1
),(

π
. (4.21) 

Under isotropic conditions, a spectral function may be defined three-

dimensionally as above, or one-dimensionally.  The magnitude of the wavenumber 
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vector, k = | k |, has units of (length)
-1

, therefore, (k)
-1

 can be considered a length scale.    

Likewise, the spectral function is a function of k rather than of k  under isotropic 

conditions: 

 ∫
∞

∞−

−= dretrBtkB ikr

ijij ),(
2

1
),(ˆ

π
. (4.22) 

The inverse of the one-dimensional transform is: 

 ∫
∞

∞−

−= dketkBtrB
ikr

ijij ),(ˆ),( . (4.23) 

Note that for r = 0, Bij is equal to the Reynolds stress (Rij) as defined in section 4.2.1, 

divided by the density.  Setting r = 0 and i = j, one finds that: 

 ( ) ∫
∞

∞−

=== dktkBtu
trR

tB iii
ii

ii ),(ˆ)(
1

2

),(
),0(

2
12

2
1

2
1 ρ

ρρ
 (4.24) 

which indicates the turbulent kinetic energy in the xi direction is an integral of the 

spectral function over the wavenumbers represented by k.  From this, 2/ˆ
iiB can be 

interpreted as the distribution of this energy per unit mass over the wavenumbers.   

The total kinetic energy of a three-dimensional flow is the sum of the kinetic 

energy in all three axes.  Again, isotropic conditions indicate this energy to be the same in 

all three axes, so that total energy per unit mass is equal to ),0(2
3 tB .  Likewise, the sum 

of the spectral functions can be considered the full energy spectrum: 

 ( ) )(3322112
1 ),(ˆ

2
3),(ˆ),(ˆ),(ˆ),( isotropictkBtkBtkBtkBtkE =++=  (4.25) 

and 

 [ ] ∫
∞

=++
0

2

3

2

2

2

12
1 ),()()()( dktkEtututu . (4.26) 
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It is possible to arrive at the same form of energy spectrum by Fourier transforms of the 

turbulent velocities rather than the correlation functions, but as iu does not go to zero 

with distance in the manner that the correlation function does, resolving the integrals 

becomes somewhat more complicated with that approach.   

Applying the Fourier transform to the Navier-Stokes equations can also be used in 

a spectral approach, and can be used to derive a spectral equivalent to Eq. 4.16, 

producing the wavenumber-dependent change of energy with time: 

 ),(2),(),(
),( 2

tkEktkFtkG
dt

tkE
ν−+=

∂
. (4.27) 

In this equation, G(k,t) represents the generation of turbulence, adding turbulent energy to 

the flow through interaction with the mean flow or by other means.  This is sometimes 

referred to as forcing or production.  The term 2νk
2
E(k,t) represents the viscous 

dissipation of energy.  It should be noted that with proportionality to k
2
, dissipation 

becomes more dominant at higher wavenumbers, which correspond to smaller length 

scales.  F(k,t) is the energy flux term, representing the transfer of energy between length 

scales.  Due to aforementioned closure problems with the RANS equations, this term 

requires a cubic velocity correlation that is not defined by the RANS, and expressions for 

this term may vary with different models.  For isotropic turbulence and a cubic 

correlation function ξ(r,t), this term can be found to be
4
 

 ( ) ( ) drtrr
rrrr

krk
tutututkF ∫

∞





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∂

∂

∂
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++=
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)()()(
3

1
, ξ

π
. (4.28) 

In many derivations and analyses, it is useful to note that F(k,t) involves only the transfer 

of existing energy, not the addition or dissipation of energy.  Therefore,  
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 0),(
0

=∫
∞

dktkF . (4.29) 

4.2.3. The Kolmogorov Spectrum 

This model of turbulence was put forth by Andrei Kolmogorov in 1941.
5
 The 

events of World War II prevented his work from becoming known in the west for some 

years, and during that time others arrived at the same derivations independently.
6,7

  

Kolmogorov published corrections to his theory in 1962,
8
 but many works continue to 

refer back to his original paper. 

The Kolmogorov model makes many assumptions about turbulence.  As was 

often done in the preceding sections, it assumes that incompressibility and an isotropic 

distribution of ensemble-averaged turbulence are good descriptors of the flow.   In the 

formulation of this model, it is also assumed that the turbulence is quasi-stationary, with 

either no mean flow or a mean flow that is largely irrelevant to turbulent activity on the 

length scales of interest.  It is then assumed that the turbulence is fully developed and has 

reached a form of equilibrium, such that the ensemble-averaged properties do not change 

with time. 

If there is no change in time, then Eq. 4.27 becomes 

 )()()(2 2 kFkGkEk +=ν . (4.30) 

Integrating over all values for k causes the flux term to drop out, as it deals only with 

transfer of existing energy, leaving   

 dkkG∫
∞

=
0

)(ε . (4.31) 
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That is, the net rate of turbulent energy entering the flow must equal the net rate of 

viscous dissipation of energy from the flow, which is to be expected for equilibrium 

conditions of this sort.   

A further assumption of the Kolmogorov model is that the production process and 

the dissipation process occur at widely separated length scales.  The large scale is 

dominated by large persistent eddies, sustained by the production of turbulent energy.  In 

the atmosphere, this may correspond to large-scale wind shear, plumes due to solar 

heating, or other phenomena that tend to exist on the larger scales.  As noted previously, 

k
2
 is a component of the viscous dissipation term in spectral form.  Thus, it reaches 

greatest prominence at large values of k, corresponding to small length scales. 

The range of scales between these two is known as the inertial range.  In this 

range, both the addition and dissipation of energy are negligible.  By the assumptions 

regarding the large and small scales, as well as Eq. 4.31, this indicates that energy enters 

the flow at the larger length scales, is transferred to the smaller length scales at a constant 

rate over this range, and that the rate of energy entering or leaving this range is equal to 

the net dissipation rate, ε .  From this, it is assumed that the energy spectrum in this 

region is of the form 

 mn

K kCkE ε=)( . (4.32) 

E(k) has units of velocity squared per wavenumber, which can also be written as 

length cubed over time squared, or l
3
/t

2
.  The units for ε and k are l

2
/t

3
 and 1/l, 

respectively.  To match units of time, n must equal 2/3, which requires m to equal -5/3 to 

match units of length, leading to the result: 
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 3/53/2
)( −= kCkE K ε . (4.33) 

Sometimes CK and
3/2

ε are combined into one constant, particularly if the magnitude 

of ε is unknown or irrelevant to the application in question.  Under the approximation 

of Eq. 4.33, |E(k)| =|CK
3/2

ε | when k = 1.  Therefore, this quantity corresponds to the 

energy associated with the 1-m scale in the flow.  However, CK has no units and the units 

of
3/2

ε are l
4/3

/t
2
, which are not correct for an expression of energy.  There is also a 

tendency to confuse this constant with 2

vC , which is associated with the structure function 

described later in this section. 

Figure 4.1 shows a sketch of an idealized energy spectrum for atmospheric 

turbulence.  The peak of this curve corresponds to the length scales where turbulent 

production or forcing is most dominant in the flow.  Energy transfers to both higher and 

lower wavenumbers, but preferentially transfers to larger values of k.  This produces the 

inertial range which follows the k
-5/3

 trend.  With increasing k, viscous forces eventually 

overtake the inertia of the fluid, and the spectrum plot drops rapidly as the energy is 

dissipated. 
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Figure 4.1: Turbulent Spectra Approximation. 

Kolmogorov’s work also describes turbulence in terms of a structure function, 

defined as the average magnitude-squared difference in a property over a given 

separation  

 ( )2

)()()( xurxurD v −+= . (4.34) 

This is related to the previously-defined correlation function )()( xurxu + by 

 ( ) )()(2)()()()( 22
2

xurxuxurxuxurxu +−++=−+ . (4.35) 

In the isotropic case, the relation with the correlation function (Bv(r)) can also be written 

as 

 ( ))()0(2)( rBBrD vvv −= . (4.36) 
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The subscript v in these expressions is used to indicate a velocity correlation or structure 

function.  

It was found by Kolmogorov
9
 and Obukhov

10
 that this structure function has the 

form: 

 ( )
( )∫

∞ −

+
−=

0

6/5222
/4

)cos(12)(

22

dk
Lk

Ce
krrD

lk

v

π
. (4.37) 

As with the energy spectrum, there is a large scale, a small scale, and an inertial scale 

between the two.  The variables L and l in Eq. 4.37 represent the length scales which can 

be considered “large scale” or “small scale”, respectively. 

Figure 4.2 shows the structure function for an example in which L=10 m and l = 3 

mm.  It should be kept in mind that the horizontal axis in this figure corresponds to the 

separation distance r, not the wavenumber k, so large scales are towards the right on this 

figure, as opposed to being on the left for the Kolmogorov spectrum in Fig. 4.1.   In the 

small-scale range, the structure function acts as a quadratic function.  In the inertial 

range, it increases according to a 2/3 power law, and it remains constant in the large 

scales.  Over the inertial range, the structure function can be approximated with the 

simple function 3/22)( rCrD vv = .  Note that C in Eq. 4.37 is not necessarily the same 

as 2

vC in the r
2/3

 fit.  In Figure 4.2, C was set to 1 in generating the plot, but 2

vC = 3.5 for 

the power-law fit to this plot. 
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Figure 4.2: Structure function with r
2/3

 fit over the inertial range. 

To review and clarify the difference between these two functions, the energy 

spectrum (E(k)) is based on the correlation function and represents the kinetic energy 

contained in eddies of a size 1/k.  The structure function (Dv(r)) represents the average 

difference in velocity, squared, seen at two points separated by some distance r.  By the 

relation between the structure function and the correlation function, the structure function 

and energy spectrum are interlinked in such a way that if the structure function can be 

approximated by 

 
n

vv rCrD
2

)( = . (4.38) 

over the inertial range, then the energy spectrum can be approximated by 
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over the range of wavenumbers corresponding to the length-scales of r for the inertial 

range.
11

  In the case of n = 2/3, this comes to  

 3/52

8

1
)( −≅ kCkE v . (4.40) 

which matches the power law found in Eq. 4.33.   

It should be noted that the units of 2

vC should be L
4/3

/t
2
 for n = 2/3 in Eq. 4.38, 

which will also fulfill the units for Eq. 4.40.  However, failure to remember that the 

expression for the energy spectrum in terms of 2

vC contains an additional constant of 

proportionality, approximately equal to 1/8 in the case of the one-dimensional spectrum, 

is sometimes a source of confusion in discussions on this subject.  

4.3. Optical Turbulence 

Obukhov
12

 applied Kolmogorov’s ideas to a passive scalar in a turbulent flow.  

The kinetic energy spectrum associated with turbulence has units of l
3
/t

2
 because it 

corresponds to velocity (l/t) squared per wavenumber (1/l), and (l/t) (l/t) / (1/l) = l
3
/t

2
.  

The “energy” spectrum for concentrations or intensity of a quality A is then defined as 

having units of A
2
 per wavenumber, or A

2
/l.  If the turbulence behaves according to the 

Kolmogorov model, then ε and k will play roles in the transport and mixing of A, but 

there will also be diffusion of this quality, which can be represented by a second 

dissipation term, εA.  This term will have units of A
2
/t, and by dimensional analysis,  

 3/53/1
)( −−

== kKkKkE AA

pn

A

m

AA εεεε  (4.41) 
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for some value of the constant KA.  Thus, this scalar spectrum also follows the -5/3 rule 

found for the energy spectrum.  In fact, a scalar spectrum for a flow will tend to have the 

same overall shape as the turbulent energy spectrum, though not necessarily exactly the 

same shape due to slightly different governing dynamics. 

While the energy spectrum indicates energy content for the flow, scalar spectra 

such as this are more indicators of spatial frequencies in distribution of whatever property 

A represents.  In some cases and applications, it is more physically meaningful to look at 

a structure function of the form  

 ( )2

)()()( xArxArD A −+=  (4.42) 

as an indicator of the average variation in A over a separation distance of | r | between two 

points.  As with the scalar spectrum, scalar structure functions tend to follow the 2/3 

power law presented for velocity structure functions towards the end of section 4.2.3. 

As was addressed in section 4.2, temperature is often treated as a passive scalar 

when dealing with incompressible flows.  Therefore, there will be some temperature 

structure function, ( )2

)()()( xTrxTrDT −+= , which can be approximated by 

3/22)( rCrD TT = over the inertial range.  As was noted in section 2.3, index of refraction in 

dry air varies with pressure and temperature in such a way that  

 
T

P
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71077.71 −⋅+≅  (4.43) 
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for wavelengths near the visible range, pressure in Pascals, and temperature in Kelvin.  

These variations in n can then be described in terms of an index structure function Dn(r) 

that can be approximated by 3/22)( rCrD nn = over the inertial range.  If temperature 

fluctuations are the only significant contributor to variations in index, then 

 2

2

27

2

10

77.7
Tn C

T

P
C 








≅ . (4.45) 

Since n is a ratio and without units, Dn is likewise unitless, and 2

nC has units of length to 

the -2/3 power.  The optical index spectrum can then be approximated by  

 3/52

8

1
)( −≅ kCkE nn  (4.46) 

over the inertial range. 

In many cases, one will see the refractive index power spectrum written as  

 3/112033.0)( −=Φ kCk nn . (4.47) 

This is based on a three-dimensional Fourier transform, as seen in Eq. 4.21 rather than the 

one-dimensional form of Eq. 4.22 used throughout the preceding derivations.  This 

approach is more physically meaningful for some optical applications, as it reflects an 

optical environment as a set of overlapping three-dimensional volumes of various sizes 

with variations in the average value of n for each region.  Again, failure to remember the 

constants of 1/8 and 0.033 in Eqs. 4.46 and 4.47 is sometimes a source of confusion in 

discussions of optical turbulence. 
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4.3.1. Coherence Length 

Since the presumption is that the single parameter, 2

nC , fully characterizes the 

strength of the index of refraction in both scale size and amplitude, it follows that it 

should be possible to determine the smallest scale size of “significant” disturbances 

induced on a wavefront passing through the flow.  Fried defined a coherence length, r0, 

now referred to as the Fried parameter that is associated with this presumption.   

As addressed in previous sections, the phase variation on the wavefront of the 

beam propagating through the atmosphere is a result of integrating the effects of index-

of-refraction variations along the propagation path.  If those index variations are 

distributed according to a structure function following a 2/3 power law, then the phase 

structure function over the aperture can be described by a 5/3 power law (Dφ(r) 3/52
rCϕ≅ ), 

the change in power from 2/3 to 5/3 being a consequence of the integration.  The strength 

of an electromagnetic wave is usually defined by its amplitude (A); however, in many 

optical propagation problems, intensity (I=A
2
) indicates the energy falling on the target.  

A log-amplitude structure function can be defined in terms of the unaberrated amplitude, 

A0: 

 ( )
2

0

2

0

)(
ln)ln())(ln()( 








=−=
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This is useful as it can be combined with the phase structure function as an overall 

wave structure function, D(r), such that D(r) = Dφ(r) + DA(r).  Tatarski
11

 also dealt with 

this definition of structure functions and found that over a propagation path from point s1 

to point s2: 
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Fried
13

 assumed that if one was attempting to recover information from an optical or 

electromagnetic signal received through an aperture, then there would be some signal of 

amplitude AS, modulated onto a carrier wave of amplitude A0, such that A0 >> AS.  This 

modulation might be one of amplitude, phase, or frequency.  Based on this assumption, a 

circular aperture of diameter d, and a combined structure function of Dφ(r) + DA(r), a 

normalized signal to noise ratio can be written in terms of d, normalized by some length 

scale r0: 
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This function, shown in Fig 4.3, is asymptotic to a constant value for large 

diameters, and proportional to the square of the diameter for small apertures.  This may 

be explained as increasing the aperture gathers more light which increases signal 

strength, with the area being proportional to the square of the diameter.  However, a 

larger diameter also leads to larger degrees of phase variation across the aperture and 

increasing noise.  Eventually, the growing noise due to phase variation overtakes the 

greater light intake, and the signal to noise ratio levels off to a constant value.   
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Figure 4.3: Fried’s normalized signal-to-noise ratio.
13

 

Setting r0 such that  

 3/5

0 )/(88.6)()( rrrDrD A =+ϕ  (4.51) 

normalizes this curve to a value of 1 over the larger apertures and places the intersection 

of the two asymptotes to the point where d/r0 = 1.  This also indicates that having an 

aperture larger than this value of r0 will not significantly improve the signal to noise ratio 

of a signal or resolution of an image. 

Fried combined Eqs. 4.49 and 4.51 to find an expression for r0 in terms of 2

nC : 
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As r0 also represents a limit in improving the resolution of an image, it is often identified 

as the size of the largest aperture that can be considered diffraction limited.  However, 
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this is an inherently imprecise definition, as any variation from a planar or spherical wave 

over the aperture will result in a deviation from the diffraction-limited case, even if that 

deviation is vanishingly small.   

It so happens that the value of r0 arrived at as above is such that the mean-squared 

value of phase variations within a circular aperture of diameter r is 
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Thus, a more quantitative physical interpretation often given for r0 is that it is the size of 

an aperture over which the rms of phase variations across the aperture is approximately 1 

radian.  This commonly given definition of r0 is an incidental byproduct that is a few 

steps removed from the basis of its definition.   

However, coupled with Eq. 4.49, it is clear that r0 not only defines a length scale, 

but also defines the amplitude of the phase variation over that length scale, and r0 can be 

used as a basis for designing an adaptive-optic system.  As addressed in section 3.5.1, 

corrective systems are limited by the available degrees of freedom which are usually 

connected to the number of actuators that can be placed in a finite area, and so are often 

unable to completely match the form wavefront in performing a fit for correction.  As a 

rule of thumb,
14

 if the points of actuation in a corrective system have a distance of 

separation, rs, then the residual phase variance after correction by this system will be   
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The fitting error constant, κ, depends on the type and shape of correction 

associated with each actuator.  If the actuators only correct for piston in the associated 
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area, then κ≅ 1.26.  For a segmented mirror, κ≅ 0.28 and for a truly deformable mirror 

κ≅ 0.23.  These types of correction will be explained and explored in greater detail in 

chapter 8. 

It should be remembered that all of these results are dependent on Kolmogorov 

turbulence being the source of these optical effects and on the length scales involved 

being in the range for which power law approximations apply.  It should also be kept in 

mind that these results reflect averages and that the degree of optical aberration observed 

in a particular instantaneous case may be quite different. 

4.3.2. The Greenwood Frequency 

The analysis of turbulence and optical turbulence up to this point has been for 

quasi-stationary turbulence, ignoring any net motion of turbulent features in the flow, as 

well as most other time-varying qualities.  However, this work is directed towards real-

time corrections, in which case the temporal scale necessary for correction is of equal 

importance with the spatial scale. 

While features seen in turbulent atmospheric flows can and do change with time, 

the optical effect of these changes is usually small compared to the motion of these 

sources of aberration relative to a beam or viewing path.  Thus, the Taylor “frozen flow” 

hypothesis can often applied.  The motion may be due to wind, or the optical path itself 

may be in motion due to movement of objects defining the endpoints of this path.  If a 

source of aberration of length scale r has a relative velocity of V perpendicular to the 

path, then that suggests a time scale of r/V.  If r0 from the preceding section were taken as 

the characteristic length scale of the flow, then one might define a characteristic time 
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scale of τ0 = r0/V or a characteristic frequency of V/r0.  On the other hand, r0 is associated 

with a circular aperture, not a one-dimensional length scale that can be oriented in the 

direction of the flow.  Additionally, as was noted in the previous section, the qualities of 

an optical environment may change over the path length.  Likewise, the relative velocity 

of the path may change with distance along the path.  This is seen not only in the case of 

different wind speeds at different altitudes, but also in cases where a system and an object 

being tracked by the system are in motion relative to each other.   

Fried and Greenwood coauthored a paper examining the power spectra of phase 

variations seen at an aperture, with regards to the bandwidth required from actuators 

driving a segmented mirror to correct these aberrations
15

.  They found power spectra 

associated with a deformable mirror for correcting piston alone, power spectra for tilt 

correction, and differences in these spectra for segments on the edges of the segments 

surrounded by and influenced by other segments of the mirror.  While this level of detail 

in their analysis is laudable, it is also a bit much for providing guidance in engineering 

applications.  With this in mind, Greenwood simplified their work by first looking at the 

case of piston-only correction, and then taking the limit as the segment size shrunk to 

zero
16

.   From this, the power spectral density for phase variation at an infinitesimal point 

in the aperture is found to be 
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for an optical path from s1 to s2.  This expression allows for possible variations along the 

path in 2

nC and the mean velocity (V) perpendicular to the path of propagation.  
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An actuator driving a point on a deformable mirror, or any other form of optical 

correction, is likely to have some frequency response, which can be expressed as a 

complex function, H(f,fc), where fc is a characteristic frequency of the system.  This 

correction will effectively filter out part of the aberrations.  The power spectral function 

of the residual, uncorrected phase error (PSDr) will then be 

 )(),(1)(
2

fPSDffHfPSD cr ϕ−=  (4.56) 

An interesting and useful effect of power spectra of this sort is that the total power 

of the spectrum, found by integrating over all frequencies, is equal to the average phase 

variance of the associated wavefronts.  Therefore the residual phase variance due to the 

frequency response of the AO system, 2

)( frσ , will be  

 dffPSDffH cfr )(),(1
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)( ϕσ ∫
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If the frequency response is assumed to have a slow roll-off of the sort associated with 

RC-filters, 

 1)/1(),( −⋅+= cc ffiffH  (4.58) 

then for a desired value of rσ  one should design a system with a characteristic frequency 

such that 
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As noted, the Fried parameter, which is considered to be “maximum aperture size 

for a diffraction-limited image,” is a length scale that corresponds to a phase variance of 

approximately 1 radian.  Thus, phase variance of 1 radian is often seen as the limit of an 
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acceptable degree of phase variance and it is common practice to select a value of 1 for σr 

in the equation above.  The resulting value of fc is called the Greenwood frequency, 

denoted by fG.  This frequency is commonly used as a guideline for the bandwidth 

required of a corrective system intended to deal with optical turbulence.  While the 

proper calculation of 2

)( frσ  should use Eq. 4.57 to reflect the characteristics of a specific 

system, it is common
14

 to use the rule of thumb 
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in which f3dB is the frequency associated with -3dB gain (output power = ½ input power) 

for the system, often referred to as the bandwidth of the system.  Latency and time delays 

in the corrective system are normally included in the overall frequency response of the 

system, but if one wishes to consider the effects of latency alone, then a time delay of ∆t 

produces a residual phase variance of
17

 

 ( ) 3/52

)( 4.28 tfGtr ∆=∆σ . (4.61) 

4.4. The Limitations of Cn
2
 

As was noted in at the beginning of this chapter, Cn
2
 and parameters based on Cn

2
, 

such as r0 and fG, have become the commonly accepted standard indicators in 

characterizing the optical effects of turbulence.  However, they have become so 

commonly used that they are sometimes sought after or applied without consideration of 

whether or not they are applicable to the conditions encountered. 



 

116 

As was addressed in preceding portions of this chapter, Cn
2
 is defined by being 

the parameter in a 2/3-power-law curve-fit to the structure function Dn(r), characterizing 

average magnitude of variations in n over separation distances.  The existence of this 

structure function and the applicability of a 2/3-power-law fit to this function are in turn 

based on conditions of Kolmogorov turbulence, which has its own set of assumptions, 

including a requirement for the air encountered to be in a state of homogeneous, 

isotropic, semi-equilibrium with respect to turbulence.  Furthermore, in finding Dn, it is 

common to assume that temperature fluctuations are the dominant contributor to optical 

effects, and that Dn is proportional to DT, the structure function for variations in 

temperature.  Finally the curve-fit of which Cn
2
 is a parameter is intended only for the 

inertial range of turbulence, and so only describes effects associated with that range.  If 

any of these conditions or assumptions are not applicable to the conditions encountered, 

then Cn
2
 and parameters based on it become ill-defined or meaningless.  
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CHAPTER 5:  

AERO-OPTIC SHEAR LAYER EXPERIMENTS AT AEDC 

5.1. Overview 

In 1994, Ron Hugo and Eric Jumper of Notre Dame were offered access to 

facilities at the Arnold Engineering Development Center (AEDC).  More detail 

concerning these experiments can be found in papers by Hugo
1,2

 and Fitzgerald.
3,4

  At the 

time of these experiments, the facility in question was uniquely suited for the study of 

high-speed shear layers and their optical effects.  The results of these experiments 

differed from those predicted by the prevailing theories and schools of thought at the 

time, and a search for and explanation of these results prompted the line of inquiry 

leading to the work presented in this dissertation. 

A shear layer is produced when two flows with parallel but unequal vectors of 

convective flow come into contact and interact.  The layer of interaction between the two 

flows is subject to shear stresses due to the difference in velocity from one side to the 

other, hence the term, “shear layer.”  Such flows are also known as “mixing layers” 

especially if the gas or fluids on each side of the layer are of different compositions or 

otherwise have different characteristics.  Among the commonly-observed characteristics 

of shear layers is the tendency for relatively small initial disturbances to form into larger 

coherent vortical structures that “roll” along between the two streams of differing 



 

119 

velocities.
5
  Both the thickness of the shear layer and the size of the structures in the shear 

layer tend to grow over time. 

A more detailed description of shear layers and their driving mechanics will be 

presented in chapter 6, along with theoretical explanations for the optical effects observed 

in the AEDC experiments.  This chapter will concern itself the AEDC experiment, its 

results, and some of the initial implications of those results.   

5.2. The Acoustic Research Tunnel 

A schematic of the Acoustic Research Tunnel (ART) at AEDC is shown in Fig. 

5.1.  Using the AEDC Propulsion Wind Tunnel complex as a source of high-pressure air, 

this facility produced a shear layer comprised of a stream of approximately 0.8 Mach 

running parallel with a stream that had been slowed to ≅ 0.1 Mach by passing through an 

expansion and a high-density screen.  The unit Reynolds numbers for these streams 

during these experiments were 1.4 and 12.7 x 10
6
 m

-1
 respectively.  As both streams came 

from the same source, the total temperature of the two streams was equal and was 

measured to be ≅ 27°C.  Static pressure within the ART was a constant ≅ 0.6 Atm across 

the shear layer.
6
  The contraction of the test section was required to maintain constant 

mean static pressure along the length of the test section as low-speed air was entrained 

into the shear layer and accelerated.  These conditions produced a convective velocity for 

structures and disturbances within the shear layer of ≅ 160 m/s. 
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Figure 5.1: AEDC ART facility.(Havener)
6
 

Three observation stations of Schlieren-grade windows for optical measurement 

were built into the AEDC facility.  These stations included not only the 20.32-cm-

diameter side windows shown in Fig. 5.1, but also windows of the same shape and size, 

located on the top and bottom of the tunnel at the same streamwise locations as the side 

windows.  The upper and lower windows were used to pass a set of narrow beams 

through the flow for measurements using the Small Aperture Beam Technique (SABT) 

described in section 3.3.3.   

5.2.1. Initial Results 

The ART facility proved to be subject to vibration in the range of 8 Hz to 2 kHz, 

largely due to the facility being located near and dependent upon the larger 16T/16S wind 

tunnel complex at AEDC as a source of high-speed air.  This vibration was measured by 

attaching accelerometers to the ART and by measuring SABT beam jitter when running 

the 16T facility without directing any air from that facility through the ART.
7
  Hugo 

chose to deal with this by post-processing the data with a high-pass Butterworth filter 
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with a cutoff frequency of 2.5 kHz.
8
  Examples of time series of wavefronts reconstructed 

by Hugo from this data are shown in Figs. 5.2 and 5.3.   

 

Figure 5.2: Station 1 wavefront reconstruction, from data filtered at 2.5 

kHz. (Hugo)
8
 

 

Figure 5.3: Station 2 wavefront reconstruction, from data filtered at 2.5 

kHz. (Hugo)
8
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Average OPDrms of the wavefronts at station 2 was on the order of 0.06-0.160 µm 

with periods of greater and lesser distortion.  The wavefronts at station 1 were of lesser 

amplitude, on the order of 0.04 µm. 

This work was the first time that sets of continuous time series of spatially 

resolved wavefronts had been measured under such conditions.  Earlier work was capable 

of taking individual snapshots of wavefronts at isolated moments to resolve the features 

of wavefronts from such flows, but was not able to trace the evolution of those features 

with time.  Previous estimates of performance degradation for optical systems dealing 

with flows of this nature were forced to rely on a statistical approach that treated the 

turbulence as random, much like the approach used in atmospheric propagation described 

in chapter 4. 

5.2.2. Re-reduction of the AEDC Data 

The experiment carried out by Hugo at the AEDC was largely intended to show 

that such measurements were possible.  A more thorough analysis and explanation of 

what the measured wavefronts and their characteristics meant was carried out by Edward 

Fitzgerald at Notre Dame.  In analyzing the AEDC data, he found that for measurements 

taken through the shear layer, with air was passing through the ART facility, vibration 

seemed to be a significant contributor to the measured beam jitter only for frequencies 

less than 500-700 Hz.
9
  Therefore, it seemed reasonable that the cutoff frequency for 

filtering out vibration from the measurements might be lowered from the 2.5 kHz used by 

Hugo.  Figure 5.4 shows the results of repeating wavefront reconstruction for station 1, as 

performed by Hugo from the same data, but with different cutoff frequencies of filtration. 
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(a)  

 (b)  

 (c)  

 (d)   

Figure 5.4: Wavefront reconstruction from AEDC data for station 1 with 

varying cutoff frequencies in high-pass filtering: (a) 2000 Hz, (b) 1200 

Hz, (c) 750 Hz, (d) 0 Hz (unfiltered).  (Fitzgerald, 2002.)
9
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Of note in parts (a) through (c) of Fig. 5.4 is that in changing the cutoff frequency 

from 2000 Hz to 750 Hz, the overall appearance of results from station 1 does not change 

significantly, although OPDrms does increase by about 27% from 0.045 µm to 0.057 µm.  

When filtration is removed entirely in part (d), there is significant tilt off to one side.  As 

was alluded to earlier and will be explained more fully in chapter 6, structures and 

features of shear layers normally begin as small-scale disturbances which grow and 

combine over time into larger structures.  Station 1 of the ART was located at a point in 

the shear layer just after the two streams came into contact.  In this region, the only 

features expected to be present in the flow are disturbances fed into the flow by from the 

boundary layer on the splitter plate.  These disturbances eventually grow and develop into 

larger coherent structures, but this would not happen within the region of measurement at 

station 1 for the conditions within the ART facility.  Therefore, features on the scale of 

the steady tilt seen over most of the wavefront series shown in Fig. 5.4 (d) are most likely 

a result of a corruption of the data, such as by low-frequency vibration, rather than a 

product of features in the flow. 

Figure 5.5 repeats the reconstruction process of Fig. 5.4 with the data from station 

2.  In this case, changing the cutoff frequency from 2000 Hz to 750 Hz raises the OPDrms 

by 37% to 0.274 µm from 0.167 µm.  Beyond that, the overall character of the 

disturbances seen in these reconstructed wavefronts changes.  The wavefronts become 

increasingly dominated by back-and-forth cycles of tip-tilt, with the average period of 

that cycle growing longer with decreasing cutoff frequency. 
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(a)  

(b)  

(c)  

(d)  

Figure 5.5: Wavefront reconstruction from AEDC data for station 2 with 

varying cutoff frequencies in high-pass filtering: (a) 2000 Hz, (b) 1200 

Hz, (c) 750 Hz, (d) 0 Hz (unfiltered). (Fitzgerald, 2002.)
9
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The oscillating tilt of Fig. 5.5 (c) is indicative of structures larger than the 5 cm 

region of reconstruction passing by.  The relations between structure size, aperture size, 

and T/T will be explored more thoroughly in chapter 8, but in general, flow structures 

and associated wavefront features of a length scale larger than the region of interest tend 

to produce T/T while shorter scales are associated with wavefront distortions requiring 

higher-order correction.   

For a cutoff frequency of 750 Hz, the typical period of the T/T in the station 2 

reconstructions is about 0.72 ms, which can also be expressed as a frequency of ≅ 1400 

Hz.  This is why these features were not visible in the reconstruction of Fig. 5.5 (a) based 

on data filtered at 2000 Hz or the original reconstruction that was filtered at 2500 Hz.  

This frequency should be determined by the average size of the structures (Λ) and the 

convection velocity (UC) at which they pass through the region so that 

 
Λ

= CU
f . (5.1) 

With f ≅ 1400 Hz and UC ≅ 160 m/s for the flow in the ART facility, Λ ≅ 11.4 cm.  

As predicted, this is larger than the 5 cm reconstruction region and so manifests primarily 

as T/T effects in the wavefronts.  Frequencies of 2500 Hz and higher, as were used in the 

original reconstruction, would correspond to structure sizes of Λ≅ 6.4 cm and smaller, 

which produce the higher-order disturbances with only a moderate amount of tilt seen in 

Fig. 5.3. 

5.2.3. Severity of the Distortion 

As previously noted, the goal at the time of the AEDC experiment was to show 

that measurements of this sort were possible.  Explorations of what the results meant 
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waited until afterwards.  The first implication of this data is that sheer layers involving 

sub-sonic, compressible flows present a significant problem for optical applications 

Figure 5.6 shows time-varying near field wavefronts from the 750 Hz filtration cases in 

Figs. 5.4 and 5.5 as well as the associated far-field intensity patterns based on those 

wavefronts for light with a wavelength of 1.0 µm.  These patterns include the effects of 

tilt correction, but still the central lobe of this intensity pattern wavers and splits into 

lobes.  Hints of an Airy Disk (in one dimension) can be seen now and again, in the results 

from station one.  In the results for station two the irradiance pattern has splintered into a 

jumbled mess with peak irradiance being, at best, roughly half that seen from station one, 

and the location of that peak wanders over a greater range of locations.  

 

 

Figure 5.6: One-dimensional wavefronts and far field patterns as a 

function of time for station 1 (left) and 2 (right). (Cicchiello, 2001)
10
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These far field patterns produce time varying Strehl ratios shown in Fig. 5.6.  The 

average value for this ratio over this period of time at station one is 0.41, indicating that 

almost three-fifths of the potential on-target intensity may be lost in transmission due to 

these aberrations.  If the application were for a high-bandwidth communications system, 

then the requirement to avoid losing bits in the data stream would most likely be some 

required minimum in the instantaneous Strehl ratio rather than its average value.  By this 

standard, the performance is even worse, as the on-axis intensity effectively drops to zero 

at one point.
11

 At station two, the Strehl ratio has an average value of 0.07, and over 

much of the recorded time period is very close to zero.  From these results, it would 

appear that optical applications in environments where flows of this sort may be 

encountered will face serious problems if some form of correction is not provided.  

 

   Figure 5.7: Strehl ratios produced by the irradiance patterns in Fig 5.6. 

(Cicchiello, 2001)
11

 

5.2.4. Predictions and Prevailing Theory 

A second implication of these results is that the commonly used assumptions and 

models at the time do not predict the severity of the measured optical distortions.  Much 

of the work concerning optical effects of shear layers prior to this analysis focused on 
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two-index mixing, in which the two streams making up the shear layer are comprised of 

different gasses.  In cases where the two streams are of the same gaseous composition, 

this may still be applicable if one stream has been heated or cooled to a different 

stagnation temperature than the other.  However, this is not the case in the shear layer 

produced in the ART facility, as both streams are air and have the same total temperature 

as they drawn from the same source.   

Attempts at refining the two-index model to conditions like those of the ART 

facility have been made based on the idea that if the two streams are at different Mach 

numbers, then they will have different static temperatures, pressures, and densities, even 

if their stagnation properties are the same.
12

  Another approach is to map out the velocity 

fields in the flow and then assume that localized temperature is solely a function of local 

velocity or Mach number by the relation: 
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This is known as, “adiabatic heating.”   

These models all have two things in common.  First, they all assume that all 

changes in index of refraction in the air are primarily temperature-based, much as was 

done for atmospheric propagation in chapter 4.  Secondly, they all predict a lower degree 

of optical distortion for the flow conditions in the ART facility than what was actually 

measured.  Table 5.1 lists maximum differences in OPL as predicted by the various 

models, as well as the “worst case” observed in reconstructions of the AEDC 

experimental data with a 750 Hz filter. 
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 2-index mixing Modified 2-

index 

Adiabatic 

Heating 

AEDC 

Experimental 

Results 

OPD peak-to-

peak (µm) 

0.339 0.241 0.310 1.340 

Table 5.1: Comparison of maximum peak-to-peak OPD for predictive 

models and experimental results.
13

 

Even looking at average conditions instead of worst-case incidents, average 

OPDrms as predicted by these models is on the order of ≅ 0.12 µm while the experimental 

results shown in Fig. 5.5 (c) have an average value of ≅ 0.27 µm.  For a comparison in 

visual form, Fig. 5.8 shows results of a simulation wavefronts produced by ART flow 

conditions, based on the adiabatic heating model side by side with another example of 

results from the AEDC experiment for the same flow conditions and location. 

 

Figure 5.8: (left) Wavefronts generated by computational simulation and 

an adiabatic heating model. (right) AEDC results for flow conditions 

similar to those in the computational simulation.(Fitzgerald)
13 

All in all, it seems that these models predict optical distortions half the magnitude 

or less of those measured.  Therefore, it would seem that a new look at the fundamentals 
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of shear layers, their development and behavior, and the validity of these models and 

their assumptions is in order.  New models may be required to adequately deal with 

optically-aberrating flows of this nature.  This will be the subject of the next chapter. 
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CHAPTER 6:  

THE PHYSICAL AND OPTICAL MECHANISMS OF SHEAR LAYERS 

6.1. Overview 

Atmospheric optical propagation, which was explored and explained in chapter 4, 

takes a spectral or stochastic approach to characterizing the distortions produced by the 

free atmosphere.  The formulas and parameters used to characterize such flows assume 

that variations in temperature are the primary source of optical aberration, and that these 

variations encountered in an optical path through the atmosphere are essentially random.  

Experimental results from a sub-sonic but compressible shear layer, presented in chapter 

5, indicate that such flows are dominated by semi-regular structures of a particular size, 

and that temperature fluctuations are insufficient to explain the severity of the optical 

distortions observed.  Therefore, an exploration of what does take place in a flow of this 

sort would be beneficial in understanding how to characterize the optical effects of such 

flows and to move towards some guidelines for applying correction as exist for 

atmospheric propagation. 

Shear layers are of interest in airborne applications as they can be found in the 

boundaries of separated flows on aircraft or turrets, as shown in Fig. 6.1.  Also shown in 

this figure are a number of other flows that might share some of the characteristics of a 

compressible shear layer and might act as additional sources of aberration.   
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Figure 6.1: Separation, shear layer, and other potentially-aberrating flows 

for a possible turret configuration.  

The shear layer is of particular interest, as it occupies a position directly in the 

optical path when that path is directed downstream.  Figure 6.2 shows results found by 

Demos Kryazis
1
 for a spherical turret under flight conditions.  It reveals a sharp drop in 

delivered intensity at angles greater than 90° from forward.  The reasons for this will be 

shown in the following sections. 
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Figure 6.2: Strehl ratio as a function of azimuth look angle. (Demos 

Kryazis)
1
  

6.2. Shear Layer Mechanics 

The basic form of a shear layer is shown in Fig. 6.3, consisting of two regions of 

fluid flowing in parallel, but with different velocities.  In fact, U1 and U2 may be in 

opposite directions.  Shear layers are also known as mixing layers, though this term is 

usually applied when there are distinct differences in density, temperature, or other 

properties of the fluids in the two regions making up the shear layer.   

 

Figure 6.3: The basic flow of a shear layer. 
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In the physical world, the sharp discontinuity in velocity indicated in Fig. 6.3 can 

not persist.  Momentum is transferred from faster fluids near the boundary to slower 

fluids near the boundary, creating a layer of transition between the two main flows.  

Michalke
2
 noted that the profiles of average velocity observed in many real shear layers 

could be approximated by a hyperbolic-tangent function, 

 ( )[ ]yyU tanh1
2

1
)( += . (6.1) 

which may be shifted and scaled in y and U to fit a particular case.  This profile is shown 

in Fig. 6.4. 

 

Figure 6.4: Hyperbolic-tangent velocity profile approximation for shear 

layers. 

6.2.1. Kelvin-Helmholtz Instability 

In 1868, Hermann von Helmholtz noted that surfaces marking some sort of 

discontinuity of velocity, such as those seen around regions of separated flow, were 
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inherently unstable.
3,4

  Lord Kelvin proved this instability mathematically three years 

later.
5
  In honor of their contributions in this area, this sort of behavior is known as 

Kelvin-Helmholtz instability. 

Batchelor
6
 explained the physical mechanism behind this instability in 1967, 

using vorticity dynamics.  In this approach, the fluid is considered to be inviscid, and the 

boundary between the two regions of flow is considered to be a line or sheet of vortices.  

If the line is perfectly flat, as shown in Fig. 6.5 (a), then the forces and induced velocities 

on a portion of the line from vortices comprising other portions of the vortex line sum to 

zero.  However, if a sinusoidal disturbance is imposed on the vortex line, as shown in Fig. 

6.5 (b), then the portions of the line that are displaced downward will induce motion on 

the portions displaced upwards, and vice versa.  These forces cause the elevated and 

depressed portions of the line to move in opposite directions along the boundary, as well 

as forcing the displaced portions of the vortex line to move further from the initial 

positioning of the boundary. 

 

Figure 6.5: (a) Vortex line, (b) perturbed vortex line with non-zero net 

forces and torques. 
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Michalke
2
 performed a stability analysis of this flow assuming a mean flow with a 

hyperbolic-tangent profile as shown in Fig. 6.4 and perturbations of this flow of the form: 

 ir cicc ⋅+= , (6.2) 
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In these equations and their analysis, u’ and v’ are the perturbation velocities, ψ is a 

defined stream function, φ  is the amplitude of a disturbance, α is the wavenumber of this 

disturbance, and the complex number c = cr + i·ci contains the phase velocity (cr) and an 

indicator of the growth rate for the disturbances. (ci)  These perturbation velocities are 

then inserted into Euler’s equation of motion for inviscid flow, 
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Michalke’s results for a stability analysis of a linearized approximation of this flow are 

shown in Fig. 6.6.  He found that disturbances with wavenumbers in the range of 0 < α 

<1 are amplified by the governing mechanics of the flow, and grow with time.  The most 

amplified case is for a wavenumber of α = 0.4446.   
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Figure 6.6: Stability curve for a hyperbolic-tangent velocity profile. 

(Michalke) 

The wave number, α, from Michalke’s analysis corresponds to the streamwise 

dimension of a disturbance (Λ) by the relationship 

 
Λ

=
π

α
2

. (6.7) 

Thus, the most amplified disturbances are those with a streamwise length of 2π / 0.4446, 

or 14.13, relative to the vertical length scale for the profile shown in Fig. 6.4.  These 

disturbances will move with the convection velocity (UC) such that  

 
2

21 UU
U C

+
= . (6.8) 

This motion will then produce a frequency in the fluctuations observed at a fixed point, 

such that  
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Λ

= CU
f . (6.9) 

It is common practice to characterize flows such as this by a dimensionless ratio known 

as the Strouhal number, which is defined as 

 
V

Lf
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⋅
= . (6.10) 

The convection velocity provides a characteristic velocity (V), and a characteristic 

frequency is identified in Eq. 6.9.  The characteristic length scale (L) normally used is the 

thickness of the shear layer.  However, there is more than one definition of thickness for 

flows of this sort.   

The simplest definition of thickness may be the visual thickness (δvis) which is an 

estimate based on how thick the shear layer appears to be when made visible by Schlieren 

photography or other flow-visualization techniques.  However, this estimate is inherently 

imprecise and subjective. 

Vorticity thickness (δω) reflects a linear fit of profiles along the lines of the 

hyperbolic-tangent approximation shown in Fig. 6.4.  In this fit, shown in Fig. 6.7, there 

are three regions: two where the velocity is approximated by a constant equal to the free-

stream velocities (u = U1 or u = U2) and one in which the velocity gradient, du/dy, is a 

constant equal to the highest value for this gradient seen in the actual profile.  The 

thickness of this linear-fit profile then becomes the difference in free stream velocities 

divided by the maximum velocity gradient: 
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It is customary
7
 to assume that δω≅ 0.5 δvis. 
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Figure 6.7: Linear-fit basis of vorticity thickness.  

Momentum thickness (δθ) is a concept that was originally developed for boundary 

layers by Von Karman.
8
   Viscous effects cause the fluid in contact with a solid surface to 

have a tangential velocity of zero with respect to that surface, as well as reducing the 

parallel velocity of fluid near this surface.  Momentum thickness represents this loss of 

velocity and momentum in terms of a layer of fluid moving at the free-stream velocity.  

Specifically, a layer of fluid with velocity U∞ and thickness δθ would have a net 

momentum equal to that which is missing from the flow due to the velocity deficits found 

in the boundary layer.   
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Figure 6.8: The basis of momentum thickness for a boundary layer. 

A flow of thickness δθ, a uniform velocity U∞, and a uniform density ρ∞, would 

have a momentum flux past a fixed point of  

 ( ) θθ δρδρ 2

∞∞∞∞∞ = UUU  (6.12) 

per unit length in the cross-stream direction.  If the dimension of thickness, δθ, is to be 

matched to the reduction in momentum flux due to changes in density and velocity from 

the free-stream values, then  
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Thus, δθ can be found by the following integral: 
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Unlike boundary layers, shear layers are not bounded by a solid surface and the 

mean of u may or may not go to zero at any point.  However, the mean velocity does 
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approach some value U2 for increasingly positive y and some value U1 for increasingly 

negative y.  This can be used to find and equivalent δθ for shear layers in the form: 
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The ratio between δθ and δω is not fixed and depends on flow conditions.
9
 

This dissertation will primarily use δθ, δω, and occasionally δvis as measures of 

thickness, but these are not the only such definitions in use.  Some define shear layer 

thickness in terms of endpoints where the average velocity is within some percentage of 

the velocities at ±∞, relative to ∆U=|U1-U2|.  Displacement thickness is defined as the 

distance by which a streamline that would run parallel to a surface is displaced by the 

boundary layer near that surface.  Like momentum thickness, this can be adapted to a 

shear layer, but it is used less frequently than momentum thickness in these types of flow.     

The hyperbolic-tangent profile for a specific case can be written in terms of the 

two stream velocities and the momentum thickness, 
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From this, 2δθ would be the proper length scale for scaling the results from Michalke’s 

stability analysis.  Thus, from Eq. 6.7, the streamwise length scale of the most amplified 

disturbance should be 
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Combining this with Eqs. 6.9 and 6.10, the most amplified Strouhal number with regards 

to momentum thickness (Stθ) should be 
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More recent and refined analysis by Mokewitz, Heuerre, and Ho indicates a value 

of 0.032 for the most amplified Strouhal number.
10,11

 Despite differences in the analysis, 

these numbers are fairly close to each other, and numerous experiments confirm that the 

most amplified Strouhal number is not far removed from these values.
12,13,14,15

  

6.2.2. Initial Development 

As previously noted, the infinitely thin dividing line and sharp jump in velocity 

between the two flows indicated by Fig. 6.3 is something that exists only in a theoretical 

case.  Likewise, it takes some finite time for the hyperbolic tangent profile of Fig. 6.4 to 

develop.  In the real world, the two flows will have existed and traveled from some 

previous point, developing boundary layers as they progressed.  Figure 6.9 shows a shear 

layer formed by two flows initially separated by a thin wedge or plate.  Each flow has a 

boundary layer of flow retarded by contact and interaction with the plate.  Once the plate 

has been left behind, the two boundary layers come into contact with each other, 

producing a wake in which the flow is less than the mean velocity of either of the two 

flows.  This wake persists for a short period, before approaching a time-averaged velocity 

profile that can be approximated with the hyperbolic-tangent function presented in 

section 6.2.1 and Fig. 6.4.  While this model is for two flows coming into contact, setting 

the lower flow, U1, to zero can be used to represent a flow over a solid object with a 

separation region behind the object. 
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Figure 6.9: Sketch of spatially developing profiles and momentum 

thickness of a shear layer. 

These initial profiles have a momentum thickness, which is in turn associated 

with preferential amplification of certain frequencies and wavelengths of disturbance, as 

described in section 6.2.1.  The initial existence of the wake appears to have little effect 

on which wavelengths are most amplified.
16

  Noting the development and changes in the 

flow downstream is then best expressed in terms of x/ δθ0, where x is the downstream 

distance and δθ0 is the initial momentum thickness.  Ho and Huang
14

 indicate that scaling 

results in relation to the momentum thickness of the boundary layer of the higher-speed 

flow produces more consistent results than using the momentum thickness of the entire 

wake.  This is attributed to the high-speed boundary layer containing most of the initial 

vorticity in the flow.   
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As was noted by Helmholtz, discontinuities in a flow are inherently unstable, 

which includes the velocity deficit in the initial wake.  The amplification of disturbance 

waves in accordance with Michalke’s stability analysis has been observed in the region x/ 

δθ0 ≅ 1.  On the other hand, as indicated by the sketch in Fig 6.9, the flow does not 

immediately achieve something comparable to the hyperbolic-tangent profile.  This can 

lead to the development of an initial sub-shear layer, with the expected characteristics of 

a shear layer, but bracketed on one or both sides by regions that retain characteristics 

more indicative of boundary layers.
17

  Signs of this may be seen out to a distance of x/ 

δθ0 ≅ 100.  This can affect the most amplified Strouhal number in this region, as that 

number is usually based on the initial thickness of the boundary layers, but the sub-shear 

layer may not partake of the entirely of these layers. This is particularly true if one or 

both of the incoming boundary layers are turbulent, in which case the initial disturbances 

may owe more to the length scale and velocities of the inner boundary layer, rather than 

those of the whole boundary layer.
17

 

It was once thought that shear layers were examples of stochastic turbulence, with 

random variations in velocity imposed on top of the mean velocity profile.  This is the 

basis of Michalke’s analysis, which assumes that disturbances of all frequencies are 

initially present in the flow with roughly equal strengths, but that some range of 

frequencies is preferentially amplified while disturbances outside that range decay.  

However, it was eventually found that large, coherent structures are in fact dominant in a 

developed shear layer.
18

  These structures initially form as the growing disturbances in 

the shear layer “roll up” into vortices.   
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As a sinusoidal disturbance grows, it extends further in to the flow on each side.  

Portions extending into the higher-speed flow tend to be pushed forward, relative to the 

convective velocity carrying the disturbances in the flow.  Similarly, portions extending 

into the low-speed flow are slowed, as indicated in Fig. 6.10 

 

Figure 6.10: Effects of disturbances extending into the flows of a shear 

layer. 

Eventually, the portions extending into the high-speed side catch up with the portions in 

the low-speed side, and the vortex line or sheet representing the boundary between the 

flows rolls up in a manner somewhat similar to a cresting wave.  In this manner, a 

sinusoidal disturbance becomes a series of vortices, as shown in Fig. 6.11. 

 

Figure 6.11: Vortex rows resulting from Kelvin-Helmholtz instability. 

(Regularized with forcing.) (Roberts,
19

  1982) 

U

U
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The point at which this first roll-up occurs depends on the nature of the incoming 

boundary layer.
18

  If this boundary layer is laminar, then the vortices may be expected to 

have fully formed by the time the flow reaches the location x/δθ0 ≅ 1000.  With a turbulent 

boundary layer, the process is accelerated, with fully developed vortices at x/δθ0 ≅ 300.   

Once these large-scale vortical structures are established, all important parameters 

of the flow become independent of Reynolds number and become similar when non-

dimensionalized by a single velocity and length scale.  This condition is known as self-

preservation.
20

   Non-dimensionalization by δθ and UC renders the layer self-similar once 

it has reached this point.
18

  Within this region, non-linear dynamics of vortical structures 

growing and interacting with each other comes to dominate the flow.  Despite this 

transition, many aspects of Michalke’s linear stability analysis still seem to apply.
14

  As 

part of the non-linear process, the amplification of particular wavelengths is seen to 

saturate.  This saturation is evidence of a shift in the dominant fluid dynamics, as it is not 

something that can be predicted by linear stability analysis techniques.  However, the 

frequency associated with the neutral stability of this state is predicted by Michalke’s 

analysis, and can be seen in Fig. 6.6, where α = 1.  The associated Strouhal number for 

this state of neutral stability would be:    
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. (6.19) 

Values close to this have been repeatedly observed experimentally for the appropriate 

conditions and regions.
14

  This self-similar region can extend to values of x/δθ0 in the 

thousands, often past the point where most experimentalists stop taking data. 
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6.2.3. Growth 

In all stages of development, shear layers grow as they progress.  However, the 

rate of this growth, dδθ/dx, can change as different regions are governed by different fluid 

dynamics and mechanisms of growth.  The most commonly cited rule is for the growth of 

shear layers to be linear, with dδθ/dx equal to a constant.  If non-dimensional values such 

as the Strouhal number are to be constant, as it is in the self-similar region, then for a 

constant UC the frequency must vary inversely, so that frequency is proportional to x
-1

 

just as the thickness, δθ, is proportional to x. 

This linear growth rule of thumb is based on the behavior observed in the self-

similar region.  In the initial stages of development, the growth rate is closer to being 

proportional to the square root of x and may not exhibit an invariant Strouhal number.
11

  

As noted, the amplification indicated in Michalke’s linear analysis shifts towards neutral 

stability in this region, and so the mechanism for growth must come from some other 

aspect of the flow.  Despite this shift, there remain parallels between the nature of the 

self-similar shear layer and its form during initial development.  One important parallel 

can be seen in comparing Figs. 6.5 and 6.11.  In the former, a simplified shear layer in its 

initial stages is modeled as a line of small, overlapping vortices.  In the latter figure 

developed shear layers, having been regularized with forcing, exist as lines of relatively 

large and separate vortices.  As with the vortex line model, if one of the large vortices in 

the self-similar shear layer becomes displaced vertically relative to its neighbor, then the 

vortices will tend to influence each other, each drawing the other closer in the streamwise 

direction while pushing the other further from their common center in the cross-stream 

direction.   
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This effect can be seen in the right half of the upper portion of Fig. 6.11.  It is 

shown more thoroughly in Fig. 6.12, as well as what follows.  The two interacting 

vortices begin to rotate around each other and combine into one vortex in a process called 

pairing.  Individual vortices can and do grow with time, via turbulent entrainment of 

irrotational fluid around them.  However, as two adjacent vortices grow in this manner, 

they come to exert greater influence on each other, which eventually triggers the pairing 

process of those two vortices.  

 

 

Figure 6.12: Vortex pairing.  (Winant, 1974)
21
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With each pairing, the length scales double.  These length scales include both the 

shear layer thickness, and the streamwise spacing of the vortices.  As the frequency is 

based on these structures being carried past a point (f = UC /Λ) with each doubling in the 

structure sizes of δθ and Λ the frequency is halved.  This fits with the necessary 

relationship to maintain a constant Strouhal number addressed above. 

This pairing process indicates that the instantaneous thickness of a shear layer 

may be subject to sharp jumps as each pairing doubles the thickness of the layer at that 

point.  However, these pairing events occur at random points unless some form of 

regularizing forcing is in effect, so the mean growth rate appears linear.  In this respect, 

shear layers are unlike jets, in which the growth rate of δθ is truly a linear and relatively 

smooth process.
22

 

Growth rates tend to be dependent on the ratios of properties of the two flows, 

such as U2/U1 and ρ2/ρ1.  The ratio of the difference in velocities to the convective 

velocity is also commonly used, but can be rewritten in terms of the velocity ratio. 
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If the two streams are comprised of different gasses, then the ratio γ2/γ1 may also play a 

role, but this dissertation is focused primarily on conditions in which both streams are 

standard air.  While the nature of the growth can be explored analytically, establishing 

exact values has lain in the realm of experimental work and numerical simulation.  As 

such, there are various estimates for this growth rate from various sources based on 

experimental or numerical-model results.  Figure 6.13 was complied by Ho and Huerre
11
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using data from multiple sources.  Their ratio of choice (R) is equivalent to 0.5 ∆U/UC, 

and this figure seems to indicate a growth rate of  
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Figure 6.13: Momentum thickness growth rate for incompressible flows. 

(Ho and Huerre, 1984)
11

 

Some of the data points in Fig. 6.13 come from a paper
23

 by Brown and Roshko.  

Latter work by Papamoschou and Roshko
7
 builds on this paper and indicates the growth 

rate for the visual thickness to be  
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As noted earlier, they also estimate that δω≅ 0.5 δvis.  This equation for a growth rate 

promises to be more useful for aero-optic flows, as the optical effects of interest are 

generally due to compressibility effects, which means it is likely that the two streams will 

be of different densities as well as velocities. 

6.3. Weakly-Compressible Modeling 

The fluid dynamic theory and empirical laws in the first portion of this chapter 

include differences in velocity and density, but not temperature or pressure.  Pressure 

differences between the two streams do not appear in these equations because if a shear 

layer propagates in a straight line, then the average static pressure ( P ) on the two sides 

of the shear layer must be the same.  If there were a pressure differential ( 21 PP ≠ ) then 

the flow would shift towards the side with the lower pressure until these pressures were 

equalized, or curve around the lower pressure region if equalization of the pressure was 

not possible.  Temperatures may well be different in the two streams, but if pressure, 

density, and velocity or Mach number are known, then temperature can be calculated 

from those values. 

At the time of the AEDC shear layer experiment described in chapter 5, it was 

also common practice to assume that fluctuations in static pressure ( 'pPP += ) were 

negligible ( 0'≅p ) even in the case of shear layers with stream velocities and relative 

differences in velocity high enough to be considered compressible flows.  This 

assumption grew out of work with compressible boundary layers.  In the earliest 

applications, this was merely a convenient assumption for extracting temperature data 



 

153 

from hot-wire measurements.
24,25

  Later work with supersonic boundary layers
26,27

 

seemed to indicate that the strong Reynolds analogy (SRA),
28

 which indicates that 

fluctuating pressures are insignificant compared to the overall pressure ( 1/' <<Pp ), was 

an accurate description of such flows.
29,30,31,32

  However, this work dealt with boundary 

layers along a surface, not shear layers in free space which contain the large vortical 

“rollers” mentioned earlier in this chapter. 

A relatively simple calculation can be performed to check this.  Continued 

experimental work and simulations associated with shear layers indicate that the rolling 

structures within them have overall characteristics of a rigid rotator with angular velocity 

 rrV ωθ =)( . (6.23) 

This approximation also fits with a linear approximation of the hyperbolic-tangent 

velocity profile of shear layers, which is associated with the definition of vorticity 

thickness, as shown in Fig. 6.7.  As part of this assumption, Eq.6.23 should describe the 

velocity field of the structure out to some radius R, at which point the vortical velocities 

match the free-stream velocities of the two streams making up the shear layer. (U1, U2)  

Assuming the vortex is convicting at a the average convective speed of 
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and that U1 > U2 then in a frame of reference moving with this roller, the angular velocity 

at radius R in the direction of stream 1 will be 
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On the side towards stream 2 this will be 
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which indicates that  
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The radial pressure gradient for a vortex of this sort is
33
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As was shown in the experimental results of chapter 5, the vortical structures in 

the shear layer under study were a significant source of optical aberration, which 

indicates that density was not a constant within those structures.  However, for the sake 

of simplicity, density will be treated as a constant while performing this simplified 

estimate.  Integrating this from the center outward produces the following expression for 

pressure within the roller 
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where pmin is the pressure at the center of the roller.  From this, the pressure differential 

from the center to the edge should be 
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It is interesting to note that the size of the structure, R, drops out of this equation, leaving 

only the average density and velocity differential as factors.   

The conditions of the AEDC experiment were such that ∆U ≅ 260 m/s - 35 m/s = 

225 m/s and static pressure was approximately 0.6 Atm.
34

  This is in line with standard 

compressible-flow tables which indicate a Mach 0.8 flow would be expected to have a 



 

155 

static pressure that is 65% that of the stagnation pressure.  Going back to those tables, the 

expected density associated with these Mach and pressure conditions would be 70-75% 

of the stagnation value, which would presumably be standard atmospheric density.  70% 

of standard atmospheric density would be about 0.90 kg/m
3
.  Based on these estimates, 

one of the rolling structures in this shear layer should have a pressure differential from 

center to edge of 

 Pa
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This indicates a ratio of pressure fluctuations to average pressure of 
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In other words, the pressure fluctuations associated with the vortical structures in this 

shear layer may be almost 10% of the overall static pressure in the flow.  This is a very 

crude estimate of this pressure difference, but it is sufficient to indicate that neglecting p’ 

may not be a justifiable assumption in dealing with these flows. 

6.3.1. Discrete Vortex Modeling 

These studies led to the development of the Weakly Compressible Model (WCM) 

for computational simulation.  The basis for this approach to simulation is the Discrete 

Vortex Method (DVM), which models a shear layer as a line of point vortices, as shown 

in Fig. 6.5 on page 136 and Fig. 6.14 below.  The original code for these simulations was 

produced by Hugo
35

 for the modeling of low-speed planar jets, and then modified by 

Fitzgerald
36

 for use with compressible flows.   
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Figure 6.14: Representation of a two-dimensional shear layer by discrete 

vortices. 

A point along the x-axis of this simulation is designated as the end of the modeled 

splitter-plate.   Upstream of this point, the discrete vortices move with the convective 

velocity imposed upon the model, but are not free to deviate in their spacing or position 

in the y direction.  Downstream of this point, the vortices are allowed to move in 

accordance with the influence of other vortices in the model along with the convection 

velocity influence.  The original simulation did not extend downstream infinitely, thereby 

producing odd behavior.  The end of the vortex sheet tended to roll up faster than would 

be the case for a sheet extending out to infinity, and if more vortices accumulated on one 

side of the centerline than the other, it caused the vortex sheet to veer off in that direction.  

This has been corrected by extending the simulation to x = ∞± , imposing an analytic 

solution of the velocity field for a shear layer on points outside the region of 

computational simulation and providing a correction for the influences of these regions. 

Computational round-off error in releasing new vortices from the splitter plate 

and effects from correction for the semi-infinite domain produce perturbations in the 

computed flow sufficient to induce the kind of amplification and roll-up observed in 

physical flows.  If the distance between two consecutive vortices increases past some 
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critical distance, rcrit, the strength of those two vortices is decreased by one-third, and a 

new vortex is inserted between the two original vortices, such that the total strength for 

all three vortices is equal to that of the two original vortices.  This conserves overall 

circulation and spatial resolution along the simulated vortex sheet. 

The velocity (in polar coordinates) induced by each vortex in this model is 
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where Γ is the strength of the vortex.  To avoid difficulties with singularities at the center 

of these vortices, the core of each vortex where r is less than some rcore, is simulated by 

solid body rotation of the form 
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This model is inherently inviscid, but Eqs. 6.33 and 6.34 together produce a 

piecewise linear approximation of the velocity field for a decaying vortex in a viscous 

fluid, which is 
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The time-varying component of Eq. 6.35 is caused by momentum transfer from inner 

regions of the vortex to outer regions, which in turn is due to viscosity.  This temporal 

behavior can be approximated in the inviscid model by increasing rcore with time for each 

vortex.  This “diffusion rate” can be characterized by the diffusion of vorticity between 

two parallel laminar streams, which can be found in a similarity solution by Lock.
37

  

Lock’s solution is specifically intended for high-speed flows, and involves the similarity 

variable 
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in which U1 is the velocity of the higher-speed stream.  The position in the x direction can 

then be substituted for a temporal relation via the convection velocity: 
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Solving for y and using the velocity ratio, ru = U2/U1,  
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From this, the core of a discrete vortex in this model should have the same growth rate as 

seen in this similarity solution for a laminar flow.  Using the specific cases presented in 

Lock’s work and assuming a linear variation with ru, rcore for each vortex should be: 
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where rcore,t=0 is the initial radius of that core when the vortex is introduced into the 

model. 

As noted in section 6.2.2, the initial development of the shear layer is dependent 

on the initial thickness of the boundary layers feeding into the shear layer.   Matching the 

DVM model to a physical example then requires setting the upper and lower velocities, 

the initial boundary layer thickness, and viscosity of the fluid.  Other values in the model, 

such as Γ, rcore, and vortex spacing are determined by these conditions. 

This model, as described so far, is based on dynamics of incompressible flow.  

The original version was used by Hugo to model the mixing of two incompressible fluids 

with different indexes of refraction.  However, it has been found that even for transonic 
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speeds, such as those produced in the ART facility, compressibility effects have very 

little effect on the growth and development of a shear layer.
38,39,40,41

  Thus, the velocity 

fields and position of the vortex sheet can be modeled in an incompressible manner while 

still producing a shear layer with relative velocities, growth rates, and length scales that 

are roughly in accordance with those seen in the AEDC facility, and with predictions of 

growth rate and velocity profiles for shear layers based in the empirical work of others.
42

    

6.3.2. Optical Modeling 

The code used in this model was initially developed for a case of two-index 

mixing, in which the fluid in the high-speed portion of the shear layer had a different 

index of refraction than the fluid in the low-speed flow.  The vortex sheet represents the 

boundary between the two flows and the fluids comprising those flows.  Therefore, 

keeping track of the location of this sheet defines which fluid occupies each point in the 

flow field.  As pointed out in section 2.3.1, effective length of an optical path through a 

flow can be found by integrating the index along that path: 

 ∫=
2

1

)(

s

s

dssnOPL . (6.40) 

If the initial optical path is perpendicular to the shear layer, and the deflection 

angles acquired in the flow field are relatively small, then changes in x-position of this 

path will be negligible, and the path can be approximated as a straight line parallel to the 

initial vector of the beam.  If this vector is aligned with the y-axis, then: 
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In the two-index case, n(x,y) is determined by which side of the vortex sheet the 

point (x,y) lies.  This becomes slightly more complicated as the shear layer rolls up and 

the vortex sheet coils around itself, but the principle remains unchanged.  In the ART 

facility at AEDC, the fluid in each portion of the flow is air, with the same total 

temperature in the high and low speed portions of the flow.  Thus, the mechanisms 

producing the optical distortions observed must be different than those in the 

incompressible two-index case.  

As alluded to earlier, it was originally thought that the SRA assumption of 

negligible pressure fluctuations was essentially correct.  Therefore, the optical effects 

observed in the AEDC experiments were originally attributed to adiabatic heating.
43

  This 

was addressed briefly towards the end of chapter 5, but will be repeated here.  The 

adiabatic heating model assumes that the SRA applies and that variations in index of 

refraction are due primarily to temperature fluctuations and that local temperature is a 

function of local velocity or Mach number in the form 
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From this temperature, the Gladstone-Dale relationship, and the ideal gas law, the local 

value of n can be found as 
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Determining T and n in this form of the model then requires determining the local 

velocity at each point along the optical path from the contributions of all vortices in the 
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vortex sheet, which in turn increases the computational and storage requirements of the 

model. 

Implementation of this adiabatic-heating model with conditions matching those of 

the AEDC experiments failed to produce optical aberrations on the scale observed in the 

experiment, as shown in Fig. 5.8 on page 130, indicating that the model was incomplete.  

Examination of the velocity fields produced by this model led to questions about whether 

the SRA assumptions were correct in this case, and initial calculations of the sort 

performed in section 6.3 led to the conclusion that the SRA assumption was likely to be 

incorrect.  Fig. 6.15 shows one such velocity field in a frame of reference moving with 

the convection velocity.  This flow field was taken from a position in the model 

corresponding to station 2 in the ART facility.  As alluded to earlier, it appears to have a 

form roughly similar to that of a rigid rotator as was used in the estimate of ∆p in section 

6.3, or at least it has that profile in the y-direction through the center of this structure.  In 

the x-direction, this structure interacts with similar structures before and after, producing 

what are effectively stagnation points relative to the convection velocity. 
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Figure 6.15: Velocity field produced by the DVM model for AEDC 

conditions, centered at a position of x=48.3 cm.(Fitzgerald)
42

 

Pressure differences can be computed from the velocity field via the unsteady 

Euler equations: 
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and 
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Temperature is a function of pressure as well as velocity, and so the temperature field 

given by adiabatic heating must then be adjusted for pressure changes.  This is done via 

the Hilsh approximation,
44
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Inclusion of these pressure differentials into the model produces what is called the 

Weakly Compressible Model (WCM).  It is considered “weakly” compressible as the 

velocity field is produced by a model without compressibility effects, but the optical 

results are based off of compressibility effects of that velocity field.  Actual 

implementation of the model uses the adiabatic-heating model as an initial guess for the 

density field, and then refines the density, pressure, and temperature distribution 

iteratively, using the Euler equations and Hilsh approximation.  

6.3.3. Model Results 

The rough estimate of pressure fluctuations performed near the beginning of 

section 6.3 indicated that the magnitude of those fluctuations was a function only of the 

difference in velocity of the two streams making up the shear layer.  However, as was 

pointed out regarding the velocity field in Fig. 6.15, these rollers are not precisely rigid 

rotators, in part due to the interaction with similar structures preceding and following 

them in the flow.  Figures 6.16 and 6.17 show the simulated vortex line and associated 

pressure field for two different times at the same location in the simulation, 

corresponding to station 2 in the AEDC facility. 
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Figure 6.16: (left) Perturbed and rolled-up vortex line from WCM 

simulation. (right) Pressure field associated with the simulated conditions 

to the left.
42

 

As was addressed in section 6.2.3, shear layer growth is associated with vortex 

pairing in which the observed vortical structures combine into larger structures.  Figure 

6.16 shows the vortex line has rolled up into two vortices that are close together and 

about to combine.  In the associated pressure field, the low pressure at the center of each 

vortex does not quite reach the level of 5.7 kPa below the average that was indicated in 

the earlier rough estimate.  However, the points between these rollers, where they interact 

with each other, form points of semi-stagnation at which the pressure is actually higher 

than that found in the free stream to either side of the shear layer.  The difference in 

pressure between these highs and lows is on the order of that predicted in the simple rigid 

rotator estimate.   



 

165 

 

Figure 6.17: (left) Perturbed and rolled-up vortex line from WCM 

simulation showing one large roller. (right) Pressure field associated with 

the simulated conditions to the left.
42

 

Figure 6.17 shows simulated results for the same positions as was shown in Fig. 

6.16, but at a different time.  Unless some form of forcing is applied to regularize the 

behavior of the shear layer, vortex pairing can and will occur at random intervals.  In this 

case, the structures of the size shown in Fig. 6.16 have paired before reaching this 

location, producing one large vortex.  This is also the simulated case shown in Fig. 6.15, 

but without the velocity indicators in that figure.  In this case, the pressure drop at the 

center of the structure is almost twice that indicated in the rough estimate, while 

including the high pressure of the stagnation points between raises this to almost three 
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times the result of that estimate, with net ∆p equal to about 25% of the mean static 

pressure in the flow. 

As previously noted, the adiabatic heating model produced wavefronts that were 

significantly less severe than those observed experimentally.  Fig. 6.18, previously 

presented in chapter 5, shows the results of this simulation for the conditions of the ART 

facility at station 2, alongside the measured results for this position.  As can be seen, the 

aberrations as predicted by this model are relatively benign compared to the actual results 

obtained in the ART facility. 

 

Figure 6.18: (a) Wavefronts generated by computational simulation and an 

adiabatic heating model. (b) AEDC results for flow conditions similar to 

those in the computational simulation. (Fitzgerald)
42

 

In light of the simulation results for pressure shown in Figs. 6.16 and 6.17, the 

inability of constant-pressure models based on adiabatic heating to reproduce the optical 

distortions observed in the AEDC ART facility is to be expected.  Figure 6.19 shows 

wavefront results from the WCM for the same position and aperture size as was used in 

Figs. 6.15 through 6.18.  As can be seen, the wavefronts generated by the simulation do 
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seem to capture the overall magnitude and length scales of the measured distortions 

shown in Fig. 6.18 (b), but the simulated wavefronts are smooth, lacking the roughness 

and fine detail seen in the experimental results. 

 

Figure 6.19: WCM wavefronts, corresponding to AEDC ART station 2. 

(Fitzgerald)
42

 

Experimental results for ART station 1, shown in Fig. 6.20 also show this fine 

structure, which can not be accounted for by the WCM as the shear layer at this point is 

still in the early stages of perturbation and has not yet rolled up into the vortical structures 

that are the primary source of optical distortion in this model.  It is believed that these 

distortions in the early stage of the shear layer are due to structures produced in the 

boundary layer on the splitter plate feeding into the shear layer.
45,46
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Figure 6.20: Reconstructed wavefronts from measurements at station 1 of 

the AEDC ART facility. (Fitzgerald)
42

 

Figure. 6.21 shows the results of superimposing the experimental results of Fig. 

6.20 onto the simulation results of Fig. 6.19.  The combined wavefronts do look 

remarkably like the experimental results for station 2, shown in Fig. 6.18 (b), although it 

is not a perfect match as the small-scale detail overlying the dominant larger-scale 

aberrations in Fig. 6.18 seems to be of greater relative amplitude.  Some additional small-

scale distortions in the experimental results may be due to a growing boundary layer 

along the upper wall of the ART facility.  
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Figure 6.21: Superimposing station 1 wavefronts onto WCM simulation 

for station 2. (Fitzgerald)
42

 

In more concrete numbers, table 6.1 shows the prediction of the WCM for 

compressible model for maximum peak-to-peak OPD as compared to the experimental 

results from the AEDC experiments as well as predictions of models based on the 

previously prevailing assumptions presented in chapter 5.  The WCM prediction is within 

2% of the experimental result, while the predictions of the other models are off by a 

factor of four or more. 

 2-index 

mixing 

Modified 2-

index 

Adiabatic 

Heating 

WCM AEDC 

Experimental 

Results 

OPD peak-

to-peak 

(µm) 

0.339 0.241 0.310 1.323 1.340 

Table 6.1: Comparison of maximum peak-to-peak OPD for predictive 

models and experimental results.
42
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6.4. Conclusions 

This review of shear-layer dynamics and theory led to a new computational model 

that seems to predict the overall form and magnitude of the optical effects observed in the 

experiment at AEDC.  However, this model also predicts significant localized changes in 

pressure as the primary source of these optical distortions, which is contrary to the school 

of thought that was commonly accepted at the time of the AEDC experiment and before 

the development of this model.  Additionally, the flow depicted in this model, with 

pressure driven changes in the index of refraction and somewhat coherent and organized 

structures in the flow has little similarity to the atmospheric model upon which the 

commonly-used parameters for characterizing fluid-optic effects are based.  Such a 

radical shift from accepted theory demands empirical confirmation of the model, which 

will be the subject of the next chapter. 
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CHAPTER 7:  

OPTICAL CHARACTERIZATION OF A SHEAR LAYER 

7.1. Overview 

The experimental, theoretical, and computational work performed by others and 

presented in chapters 5 and 6 indicated that the existing theory and commonly used 

approximations for shear layers were not sufficient to explain the optical distortions 

observed at AEDC.  The weakly compressible model (WCM), presented in chapter 6, 

produced simulated results more in line with those observed experimentally.  However, 

any hypothesis must be verified by observation of physical phenomena in nature or the 

laboratory, and a good hypothesis will make predictions that can be checked in this 

manner.  The WCM predicts localized regions of significant low pressure.  Furthermore, 

it predicts that the structures containing these pressure wells will have a size and spacing 

determined by the point at which they are observed and the growth rate of the shear layer. 

Additionally, verification of the WCM is a step toward the goal of characterizing 

and dealing with the optical distortions produced by such flows.  In pursuit of this goal, 

an optical survey of a transonic shear layer was performed, leading to further insights as 

to the nature of the distortions produced by such flows, and eventually to potentially 

useful scaling laws and guidelines for corrective systems presented in chapter 8.  
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7.2. Notre Dame Weakly-Compressible Shear Layer Facility 

Use of the AEDC facility was a unique opportunity.  Gaining access to this 

facility in the future was not something that could be scheduled for or relied upon.  

Therefore, in order to study aspects of flows of the sort produced in the AEDC facility in 

more detail, a Weakly-Compressible Shear Layer (WCSL) facility was constructed at 

Notre Dame’s Hessert Laboratory for Aerospace Research.   

7.2.1. Facility Design 

A schematic of the Notre Dame WCSL facility, in its earliest form, is shown in 

Fig. 7.1.  It consisted of an inlet nozzle and test section mated with one of Notre Dame’s 

three transonic in-draft, wind-tunnel diffusers.  The diffuser section was attached to a 

large, gated plenum.  The plenum was, in turn, connected to three Allis Chalmer 3,310 

cubic feet per minute (CFM) vacuum pumps.
*
  Depending on the gate-valve 

arrangements, each of these pumps could be used to power separate diffusers, or they 

could be used in combination to power a single diffuser.   

                                                 

*
 These pumps have since been replaced by two Dekker DEH5000P vacuum pumps; however, the 

Allis Chalmer pumps were used for the experiments and research presented in this dissertation. 
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Figure 7.1: Schematic of the Notre Dame Weakly-Compressible Shear 

Layer Facility. (First configuration.) 

Being an in-draft tunnel, the feeding source was air from the room with total 

pressure and temperature determined by atmospheric conditions at the time of the 

experiment.  The test section was fed from a 104-to-1 inlet nozzle directly from room 

total pressure on the high-speed side.  On the low-speed side, room-total-pressure air was 

first passed through a settling tank with a ball valve and butterfly valve on the inlet.  

Passing through these valves at high speed produced a loss in total pressure.  The purpose 

of the settling tank was to slow down and quiet the flow.  Air drawn from the settling 

tank was then passed through an expansion section that was part of and partitions from 

the high-speed flow in the same physical nozzle. (See Figs. 7.1 and 7.2) The two flows 

met at the end of a splitter plate, located at the beginning of the test section. 

The WCSL facility was constructed not only to have such a facility readily at 

hand, but to overcome some limitations of the ART facility at AEDC.  Figuring 

prominently in these limitations were the limited optical access points in the ART.  For 

this reason the test section, shown in Fig. 7.2, was constructed entirely of ¾ inch clear 
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Plexiglas.  This material proved to be of sufficient optical quality for taking Schlieren 

images and Malley probe measurements, while the upper and lower walls of the test 

section could be fitted with optical flats when necessary or desirable.  The vertical 

dimensions and contraction ratio of this test section were sized to match those of the 

ART.  However, the horizontal width of this version of the WCSL facility was only 3.81 

cm, compared to a width of about 33 cm in the ART facility at AEDC.  

 

Figure 7.2: Schematic of WCSL test section. 

The Plexiglas construction of this test section not only provided optical access to 

the flow, alviet of poor optical quality, but made it quite easy to drill static pressure taps 

at desired locations and to create ports for inserting other sensors and probes into the 

flow.  Fig. 7.2 shows a line of such pressure taps running the length of the test section.    

The vertical bar at the midpoint in this schematic represents a sliding panel in the side 

wall that could be adjusted up or down and then clamped into place.  This panel 

incorporated a set of pressure taps arranged in a vertical line, and was located 0.5 m 
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downstream of the origin point of the shear layer.  This placement was chosen to 

correspond to the position at measurement station 2 in the ART facility, which was 0.483 

m from the end of the splitter plate in that facility. 

7.2.2. Modifying the Facility 

Over the course of performing experiments with the WCSL facility, it was 

modified to remove or reduce disturbances that might influence the development of the 

shear layer.  According to the stability analysis done in chapter 6 and experimental work 

by others, shear layers are sensitive to disturbances introduced at the point of initial 

contact between the two flows.
1,2,3,4,5,6

  One of these modifications was a throat section 

added between the test section and the diffuser.  The purpose of this section was to create 

a point of contraction at which the flow would reach Mach 1.0, which in turn would 

prevent disturbances from the pumps or exhaust system from propagating upstream into 

the test section.  A photo of this throat section is shown in Fig. 7.3.  The shape of the 

contraction and expansion of this throat was determined with 4
th

-order splines to match 

inlet slope, outlet slope, and desired minimum area with a smooth curve.  While most of 

this section was made from Plexiglas, The lower block providing the shape of this throat 

was cut from a block of wood, made from wooden sheets laminated together, with the 

upper surface sanded and given a coating of wax for smoothness. 
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Figure 7.3: Sonic throat between test section and diffuser.  Flow is from 

left to right. 

 The settling tank was modified by adding an internal baffle, constructed from 

wooden two-by-fours and quarter-inch plywood as shown in the sketch of Fig.7.4.  The 

baffle and other interior surfaces of the tank were covered with sound-dampening foam.  

The purpose of this modification was to prevent turbulence and acoustic effects produced 

as air passed through the valves into the tank, from propagating downstream and 

influencing the shear layer at its origin.  The baffles and foam dampen the sound, and 

force the air to take a longer circuitous path through the tank. 
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Figure 7.4: Settling tank interior, with baffles and sound-dampening foam. 

Afterwards, the valves themselves were replaced with “quiet valves” made up of 

bundles of tubes.  A drawing of one such device is shown in Fig. 7.5.  The purpose of 

these devices was to produce the same drop in total pressure that was produced by the 

ball and butterfly valves in the original configuration.  By using the wall friction, 

entrance, and exit effects of a relatively long tube, this pressure drop could be achieved 

with less noise than was produced with the valves.  The quiet valve segment in Fig. 7.5 

was constructed from seven segments of half-inch PVC pipe, surrounded by a sheath of 

4-inch PVC pipe and capped with a circular block of wood at each end.  These end caps 

were shaped with an outer diameter to match that of the sheath, holes to match the inner 

diameter of the half-inch PVC tubes, and recessed areas to receive those tubes and hold 

them in place.  Wood glue and silicone calk provided sufficient bonding and sealing to 

hold the device together and prevent leakage.   
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Figure 7.5: Schematic of a “quiet valve” segment. 

In measurements of flow conditions with the sonic throat in place an atmospheric 

pressure of about 98 kPa was associated with a static pressure within the test section of 

about 65 kPa within the test section and a low-speed flow of about 0.08 M.  With these 

values and an assumption that the total temperature in both streams was 296 K, that of the 

free atmosphere, density and total pressure for the low-speed flow can be calculated from 

standard relationships for compressible flow.  From these, a mass-flow rate in the low-

speed portion of the WCSL flow of approximately 0.20 kg/s was indicated, as well as a 

drop in total pressure from the atmosphere to the settling tank interior of about 33 kPa.   

In calculating the loss of total pressure through a tube, there are two factors: the 

friction from the tube walls and the effects of the entrance and exit.  Friction losses are 

found via the Darcy-Weisbach equation,
7
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in which D and L are the inner diameter and length of tube respectively.  In this equation, 

f represents a friction factor, which may be found by from Moody diagrams or iteratively 

from the Colebrook-White equation,
8
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in which ε is the roughness of the interior pipe surface and the Reynolds number is based 

on the diameter of the tube.  The total pressure loss associated with an inlet with sharp 

corners is ∆p =0.25ρV
2
 and the exit loss is ∆p =0.5ρV

2
, regardless of the shape of the exit.   

Despite the name, half-inch schedule-40 PVC pipe actually has an internal 

diameter of about 0.62 inches.  Seven such pipes have a net intake area of about 13.7 

cm
2
.  If the air in the room has a density of 1.16 kg/m

3
, then a velocity of about 125 m/s 

is needed to move the desired 0.20 kg/s through that area.  Estimates for roughness of 

PVC vary, but a value of 5x10
-5

 mm was used in these calculations.  From these values 

and the equations of the preceding paragraph, a quiet valve of the form shown in Fig. 7.5 

with a length of 30.5 cm (1 ft.) should produce a drop in total pressure of about 16.5 kPa, 

which is half of the desired 33 kPa pressure drop produced with a ball valve in the earlier 

configuration.    

This was a first-order estimate to guide the design; it neglects compressibility 

effects and the different material of the end caps.  However, when a pair of one-foot 

quiet-valve sections were constructed, attached end-to-end with a standard 4-inch PVC 

connector, and similarly attached to the settling tank in place of the ball valve, the 

resulting pressure drop was close to the desired value, and could be adjusted to the 
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desired value by rotating one device relative to the other, moving the outer ring of tubes 

in one segment out of alignment with those in the other. 

The Plexiglas used to construct the test section of the facility is a fairly poor 

material from an optical standpoint.  It is fine for observing the overall structure of the 

flow.  Even in making optical measurements involving the deflection of narrow beams, 

this material has proven adequate.  However, the distortions this Plexiglas will induce on 

a wavefront of larger dimensions are of an inconvenient and unacceptable degree in 

making measurements where accuracy to fractions of microns is desired.  The original 

test section was replaced with one in which portions of the upper and lower walls could 

be removed and replaced with glass windows of higher optical quality.  Photos of this test 

section and one of the removable portions are shown in Fig. 7.6. 

 

Figure 7.6: Test section with removable Plexiglas segments. 
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A sketch of the modified tunnel, with sonic throat and quiet valves in place, is 

shown in Fig. 7.7.  This is the form of the facility used in performing the optical 

measurements presented in section 7.4.   

 

Figure 7.7: Schematic of the Notre Dame Weakly-Compressible Shear 

Layer Facility. (Modified) 

Many of these modifications to the tunnel that existed at the outset of my work 

were directly incorporated into the design of a second-generation WCSL facility, with a 

larger cross-section.  This wider version of the facility was not used in the course of the 

research described in this dissertation, but has been used extensively by other researchers 

at Notre Dame, who are carrying on with research in this field.  As the construction and 

design of the second facility was an outgrowth of the work described in this dissertation, 

details on the second-generation WCSL and its design may be found in Appendix A. 

7.2.3. Flow Conditions 

The study of shear layers described in this dissertation was carried out in two 

stages, with somewhat different flow conditions for each stage.  The first stage of 
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experiments verified the weakly-compressible model (WCM), described in section 6.3, 

by flow visualization and by measuring pressure fluctuations.  Results of these 

experiments are described in section 7.3 below.  This verification was carried out before 

the modifications described in the previous section were made to the WCSL facility.  The 

original configuration of the facility was adequate for this set of experiments, as the 

presence or absence of the large pressure wells indicated by the WCM was unlikely to be 

affected by small disturbances.   

Measurements of static pressure from the ports in the side-walls of the test 

section, compared to the stagnation pressure measured by a probe in the low-speed flow 

and in the room from which the high-speed flow drew air indicated flow conditions of 

Mach 1.09 in the upper flow and Mach 0.17 in the lower flow.  At the pressure and 

temperature conditions measured and calculated, this indicates speeds of about 60 m/s on 

the low-speed side, and 340 on the high-speed side, with an average convective velocity 

of about 200 m/s in the shear layer between the two. 

In addition to calculating these general values, a probe to measure stagnation 

pressure was inserted through a sealable port in the upper surface of the test section.  This 

instrument was positioned so that the end of the probe was located 1 mm downstream of 

the end of the splitter plate, and was so constructed that it could be raised or lowered to 

various positions above and below the splitter plate.  Average static pressure is constant 

across a shear layer and was measured via the aforementioned pressure ports in the side 

of the test section.  Stagnation temperature of the incoming air in the high-speed flow was 

that of the room the WCSL facility was housed in, while the low-speed air was assumed 
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to be matched to this stagnation temperature.   Static and total pressure and temperature 

can be used to derive Mach number and velocity by the following relationships: 
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Fig. 7.8 shows the profile of this shear layer in terms of Mach number and Fig. 

7.9 shows the same profile in terms of velocity.  These values come from the mean rms 

of the static pressure at that position, and from total pressure data from pitot probe data at 

various vertical positions 1 mm downstream of the splitter plate.  Eqs. 7.3 through 7.6 

were then used to derive Mach number and velocity from this data.  The horizontal error 

bars on the figures indicate the error in the derived quantity based on the standard 

deviation of 2048 values recorded for each data point, while the points themselves are 

based on the rms of those values, along with the resolution error of the data acquisition 

board.  The magnitude of this uncertainty in pressure was essentially the same at every 

measurement location; however, this results in smaller uncertainties for larger values of 

P0 when Eqs. 7.3 is applied. 
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Figure 7.8: Mach number profile at the splitter plate. 
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Figure 7.9: Streamwise velocity profile at the splitter plate. 
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It can be noted that there was a small deficit in the velocity field 1 mm 

downstream from the splitter plate, consistent with a wake produced by the boundary 

layers feeding the shear layer as addressed in section 6.2.2.  Studies by Ho and Huang
9
 

indicate that the thickness of the high-speed boundary layer influences the development 

of a shear layer more than the thickness of the entire wake.  Using the data shown in Fig. 

7.9  and Eq. 6.14, the momentum thickness of the high-speed-side boundary layer was 

approximately 0.38 mm.  Initial measurements and analyses seem to indicate that the 

high-speed boundary layer was turbulent, while the low-speed boundary layer was 

laminar.   

As previously noted, both the WCSL facility, and the ART facility that it was 

based on, had cross sections with a steady contraction in the vertical dimension in order 

to maintain a steady static pressure in the streamwise direction.  Low-speed air entrained 

into a shear layer experiences a loss in static pressure as it accelerates, and entrained 

high-speed air increases in pressure as it decelerates.  Under the conditions produced in 

these facilities, the pressure loss in the low-speed air is greater than the pressure gain in 

the high-speed air, requiring a counteracting decrease in volume in order to maintain a 

steady static pressure.  The WCSL test section has a contraction ratio of approximately 

10 to 7 along its 1 m length.   

Figure 7.10 shows static pressure recorded from the pressure taps along the length 

of the test section.  The values shown here are the rms of 2048 values recorded at each 

point.  The uncertainties shown reflect the standard deviation in those values and the 

resolution limitations of a 12-bit data acquisition card.  As can be seen in the figure, with 

Mach numbers of 1.09 and 0.17, there is a slight favorable pressure gradient.  The 
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contraction of the test section was designed to maintain a constant pressure for flows with 

Mach numbers of 0.8 and 0.1, but from these results it appears to do a reasonable job of 

maintaining pressure under other flow conditions. 

 

Figure 7.10: Static pressure along the WCSL test section. 

The second stage of experiments recorded optical effects of the shear layer by 

passing the beams of a Malley probe through the flow.  These experiments, described in 

section 7.4, were conducted after the modifications to the WCSL facility described in 

section 7.2.2 were put in place.  These modifications produced changes in the flow 

conditions.  In particular, the sonic throat restricted the air flow through the facility, 

limiting the Mach numbers in the flow during this set of experiments to 0.88 and 0.06 for 

the high-speed and low-speed flows, respectively.  At the pressure and temperature 

conditions in the test section this translates to velocities of approximately 285 m/s and 22 
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m/s, with an expected convection velocity for the shear layer between these flows around 

153 m/s.  Exact speeds for any given experiment varied somewhat with valve settings and 

ambient conditions of the day, but they tended to be close to these values when all the 

modifications described in section 7.2.2 were in place.   

Figure 7.11 shows results for static pressure measurements along the test section, 

as was done in Fig. 7.10, but for the flow conditions in the modified tunnel.  The mean 

static pressure within the test section is significantly higher than for the unmodified 

tunnel, reflecting the lower velocities and Mach numbers in the flow with the sonic throat 

in place, but it still shows a similar slightly favorable pressure gradient.   

 

Figure 7.11: Test section static pressures under optical-survey run 

conditions. 
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7.3. Verification of the Weakly Compressible Model 

The initial use of the WCSL facility was to provide experimental verification of 

the WCM simulations.  Specifically, verification that the shear layer was rolling up into 

coherent vortical structures and evidence of significant pressure wells in those structures.  

The original plan included the capture of Schlieren images to visualize the density 

variations in the flow; however, the humidity on the Notre Dame campus during the days 

of these experiments proved sufficient to produce condensation mist in the low-pressure 

portions of the shear layer, which could be illuminated with a strobe lamp.  Fig. 7.12 

shows two examples with concentrations of condensed vapor to the right of center in the 

images, revealing the location of low pressure regions.  In each example there are also 

regions free of such vapor to the left of center, indicating higher pressure.  The form of 

these visualized structures bears a striking resemblance to the predictions of the WCM in 

chapter 6.  In particular, the simulated velocity field shown in Fig. 6.15 on page 162, as 

well as the associated pressure distribution in Fig. 6.17 on page 165 bear a striking 

resemblance to the condensation-visualized structures in Fig. 7.12. 
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Figure 7.12: Condensation-based flow visualizations of a structure in the 

WCSL facility. 

While the condensation images gave direct evidence of the formation of coherent 

structures, the condensation itself is only an indirect indication of low-pressure cells.  

Quantitative evidence was acquired through measurement of the unsteady pressures 

associated with these structures passing by.  The test section schematic in Fig. 7.2 shows 

a rake of pressure taps in a vertically sliding panel set into one of the side walls at the 0.5 

m x-position.  For these verification experiments, four of these taps, spaced 1.9 cm apart, 

were fitted with surface-mounted 5-psi Kulite ultra-miniature pressure transducers.  As 

the pressure inside the test section was already lower than the static pressure in the room, 

and the point of this experiment was to measure the existence of regions with even lower 

pressure in the flow, the difference between the static pressure of the room and the lowest 

pressure to be measured in the flow would have exceeded the dynamic range of these 



 

192 

transducers.  Thus, it was necessary to provide a vacuum pressure as a reference pressure.  

The existence and location of this additional vacuum system is noted in the tunnel 

schematic shown in Fig. 7.1. 

As the coherent structures passed by the 0.5 m x-location, the transducer array 

measured the unsteady pressure; however, these structures were not perfectly uniform in 

frequency, stage of formation, spacing, or vertical position at this point.  Thus, a Kulite at 

a fixed y location was unlikely to capture a time-position cut through the same portion of 

each successive structure as it passed through the region.  To cope with this and facilitate 

the comparison and averaging of these data, recording of these data were triggered by the 

Kulite closest to the centerline of the shear layer reaching a threshold of low pressure.  

This threshold was set low enough that the trigger fired only when the pressure reached 

an absolute minimum.   

Because of this threshold triggering, the data recorded reflected cases with 

particularly severe pressure fluctuations at that location, rather than what might be 

considered average cases.  Referring back to the predictions of the WCM, Figs. 6.16 and 

6.17 show predictions for flow at the same location, but in one case the flow exhibits two 

smaller structures while in another the smaller structures combined into a larger structure 

with a greater magnitude of pressure variations.  As this method of triggering seeks 

instance of particularly low pressure, it tends to capture the cases corresponding to the 

paired example of Fig. 6.17 while passing over cases corresponding to Fig. 6.16.  

Once triggered, 2048 measurements were collected at each transducer location at 

50 kHz.  Two hundred such sets of data were collected at each transducer location and 

then ensemble averaged.  By adjusting the y location of the four pressure ports, and 



 

193 

triggering off the most shear-layer-central transducer, six y-location, ensemble pressure 

traces were captured.  For comparison, Fig. 7.13 shows an ensemble average of 200 

phase-locked data series overlaid with a single data series.  It can be seen that after the 

first cycle, the averaging reduces the amplitude of oscillation of the static pressure; 

whereas, the single trace continues to have large excursions in amplitude compared to the 

ensemble averaged trace.  What does seem to be captured is the essential character of the 

first cycle, which is triggering the data collection.  The ensemble appears to capture the 

average frequency of subsequent cycles, despite the variations in amplitude and period 

seen in the individual trace.  It is interesting, however, that the time between the low-

pressure trigger event that begins each data series and the next valley in the ensemble 

average indicates a frequency of approximately 1 kHz, while the following peaks and 

valleys of the ensemble average have a frequency of approximately 1.3 kHz.  This is 

consistent with noting that the data acquisition was triggered by the pressure reaching 

low points that were lower than what was seen in most structures passing that point, and 

so the first cycle of the pressure fluctuations in the ensemble tends to be slightly larger 

than the subsequent cycles. 
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Figure 7.13: Phase-Locked Average of 200 Trigger Traces Overlaid by a 

Single Trace. 

Figure 7.14 shows the ensembled pressure and location-averaged results for only 

the first cycle.  In this instance, location averaged refers to averaging two or more sets of 

200 traces from different Kulite transducers for different positions of the array of sensors, 

with sets being combined based on their position relative to the transducer being used to 

trigger the data collection.  Thus, the averaged traces associated with positions furthest 

from the y = 0 position are based on only a single set of 200 traces while four such sets 

averaged together make up the y = 0 position.  To allow for further variations in 

measured results due to differences in position of the rake, each set of traces recorded at 

the same time was scaled by the value of the first cycle peak-to-peak average for the 

largest trigger of the four triggered traces.  It should be noted that even this method, 

because the peak-to-peak values are averaged, slightly underestimates the actual static-
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pressure well depth and clearly underestimates the pressure peaks found at the saddle 

point in the braid between successive structures.  It should also be noted that the 

horizontal axis in Fig. 7.14 is plotted as position rather than time.  This position was 

derived from the time history by multiplying the time by the convective velocity in the 

previously cited frozen-flow relationship of ∆x = UC∆t.  In the present case, referring 

back to Fig. 7.9, the convective velocity was 198.4 m/s. 
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Figure 7.14: Average pressures associated with a coherent structure at x = 

0.5 m. 

These data only include points after the trigger event, which corresponds to points 

in the flow upstream of the pressure well that serves as the trigger.  The original intent in 

devising this experiment was to use a central trigger for these data, so that data preceding 

the trigger event for some period would be recorded as well as data following the instant 

of this trigger.  However, this proved infeasible with the data acquisition system in use at 
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that time.  As may be noted in Figs. 6.16 and 6.17, the structures and static pressure wells 

predicted by the WCM are not symmetric in the up- and downstream directions; however, 

in order to get a sense of the well shape for comparison with predictions of the WCM, the 

data from upstream direction was reflected into the downstream direction and plotted as a 

surface shown in Fig. 7.15; the pressure well from Fig. 6.17 is replotted at the same scale 

in Fig. 7.15 

 

Figure 7.15: Pseudo-reconstruction of an average static pressure well (left) 

compared to WCM simulation. (right) 

This pseudo-reconstruction, when compared to the WCM prediction, not only 

indicates that the predicted pressure well exists, but it shows unmistakable similarities in 

relative location, spatial scale, and magnitude these of variations in pressure.  For reasons 

already addressed, this is far from a complete picture of the flow and the structures within 

it, but it is sufficient to show that the WCM captures aspects of the flow not present in the 

previously-accepted thinking and modeling prior to these experiments. 
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Before leaving this section, it is worth mentioning why the pressures measured on 

the side walls of the test section represent the static pressure in the coherent structures as 

they pass by.  While the pressure taps clearly represent the locations relevant to the 

structures, a boundary layer on the side wall separates the measurement location in the 

wall-normal direction from the pressure away from the wall in cells as they pass by.  

Because the structures are well-defined and effectively two-dimensional, they have two-

dimensional pressure fields which are identical in any wall-parallel plane cut at any wall-

normal location in the test section up to the boundary layers on the side-walls of the test 

section.  Thus, the pressures at the edge of the boundary layers are the pressures these 

experiments attempted to capture.  One of the basic premises of boundary layers is that, 

at least on average, boundary layers cannot support pressure gradients in the wall-normal 

direction.  In this case “on-average” refers to unsteady fine scales within the laminar or 

turbulent boundary layer itself.
10

  These fine scales are at much higher frequency than the 

passage frequency of the coherent structures in the shear layer.  In the present case the 

boundary layer at the 0.5 m location was turbulent.   

A number of researchers have studied the frequencies and amplitudes of pressure 

fluctuations in the boundary layer.
11,12,13

  Buckner et. al.
12

 found that on average these 

frequencies are associated with structures that are approximately equal in size to the 

boundary layer thickness and bass by at approximately 0.8 the outer velocity of the 

boundary layer.  In the data in Fig. 7.13, it is probable that the highest frequency 

fluctuations on the single trace an be associated with the boundary layer through which 

the pressures are being measured. 
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7.4. Optical Measurements 

With this verification of the WCM, attention was again turned to the optical 

effects of the flow, using a Malley probe to study these effects.  Details on principles and 

operation of Malley probes are described in section 3.3.3.  The basic principle is that 

beams with a diameter that is small relative to the optical distortions being induced are 

directed through the flow, and the deflection of these beams corresponds to the local 

slope that would be induced on a planar wavefront passing through the flow.  Use of 

convection velocities, frozen flow assumptions, and combining of data from different 

beams can then be used to reconstruct wavefronts over larger streamwise lengths up and 

downstream of the measurement location.  A sketch of the approximate placement and 

orientation of these beams in the flow and test section during these studies is shown in 

Fig. 7.16.  

 

Low Speed Flow 

High-Speed 

Flow 

Malley Probe  

Beams 

 

Figure 7.16: Malley probe beams directed through the flow and WCSL 

test section. 
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7.4.1. Measurement System 

A Malley probe makes use of the average convective velocity in the flow to 

extrapolate measurements to points upstream and downstream of a measurement point.  If 

the flow at a given location in space and time induces a beam deflection of θ(x,t), and the 

velocity at which the sources of aberration are convecting (UC) is known, then at some 

later time, (t + ∆t) that portion of the flow will be some distance downstream, (x + ∆x) 

such that 

 
t

x
U C

∆

∆
= . (7.7) 

If the times and distances of convection are sufficiently small that the structures in the 

flow do not change significantly, then it may be assumed that an optical deflection angle 

(θ) measured at position x and time t will be close to the deflection angle that would be 

measured at position x + ∆x and time t + ∆t.  Therefore,   
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By this assumption, a time-series of deflection-angle measurements can be used to 

reconstruct the wavefront upstream and downstream of a single measurement point.  Of 

course, there are limits to how far one can go from the measurement point and maintain 

an acceptable degree of accuracy as the flow does change as it progresses towards the 

measurement location from upstream and as it continues downstream. 
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To capture the convection velocity necessary for this extrapolation, a closely-

spaced pair of beams is used, one directly upstream of the other.  Per Eq. 7.8, sources of 

distortion passing through the location of the first beam at some time t reach the second 

beam some distance ∆x downstream at time t + ∆t.  A cross-correlation between the 

deflection angles recorded for the two beams reveals the average ∆t and with a known 

spacing of ∆x between the beams, UC can be deduced from Eq. 7.7. 

The probe used in this study was constructed using two beams from a 1 mW 

helium-neon laser.  The single beam from the laser was first passed through a telescope 

with a pinhole at the narrowest focal point as a spatial filter to remove side lobes and 

aberrations from the beam.  A beam splitter was used to generate two parallel beams from 

this single beam, which were then directed upward through the flow.  After passing 

through the flow, the beams were brought back down to the optical bench, where they 

were passed through polarizing filters to adjust for intensity before being focused on to 

position sensing devices.  A schematic of this arrangement is shown in Fig. 7.17 and a 

photo is shown in Fig. 7.18. 
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Figure 7.17: Plan-view schematic of optical bench and sensors. 

 

Figure 7.18: WCSL facility with Malley probe setup on the optical bench. 
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Principles of lateral effect detector sensors are given in section 3.2.2.  The sensors 

were of model SC-10D from OSI Optoelectronics, formerly UDT.  Experimental 

experience with this facility has shown that the range of displacement of the beam on the 

sensor during an experiment in the WCSL facility tends to be less than 1 mm when the 

optical path and arrangement shown in Figs. 7.17 and 7.18 is used.  As such, it is only 

necessary to establish a calibration curve over the linear range, which may be achieved 

by taking data for a few points in this range and performing a linear fit.  Each data point 

on the example calibration curves of Fig. 7.19 is an average of hundreds of readings 

taken over the course of a few seconds. 

 

Figure 7.19: Calibration curves for sensors used in study of the ND WCSL 

facility. 

The use of 1-meter lenses to focus the beams onto the sensors simplifies the 

conversion of displacements measured by the lateral effect detector to beam deflection 
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angles.  Provided the detector is positioned at the nominal focal point of the lens, the 

position of the point at which the focused beam falls on the detector will be dependant 

only on the angle at which the beam enters the lens, not the location on the lens where 

this occurs.  Therefore, the deflection angle associated with a measured displacement of d 

will be  
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The approximation in equation 7.10 applies if d << 1 m, which is always the case. 

In recording these signals, a low-pass filter with a cutoff frequency of 18 kHz was 

used to prevent aliasing.  In post processing, a high-pass filter with a cutoff of 500 Hz 

was used to remove tunnel vibration.  Figure 7.20 (a) shows a long series of beam 

deflection data, gathered at a position of 20.4 cm downstream of the splitter plate.  Figure 

7.20 (b) shows the OPD reconstructed from these deflections with a convective velocity 

of 153 m/s indicated by the flow conditions and the equation 

 ∑
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Figure 7.20: Deflection data (a) and OPD reconstruction (b) from a 

position of 20.4 cm. 

As noted earlier, there are limits to how far upstream and downstream the 

wavefront can be accurately extrapolated.  Additionally any beam or field of view 

directed through the flow will also have finite limits.  Thus, it is both necessary and 

practical to place an aperture on the reconstructed wavefront, so that for any given time, 

only those points falling within some finite distance around the measurement point at that 

time will be considered.  Figure 7.21 (a) denotes a portion of the reconstructed wavefront, 

from Fig. 7.20, centered at a point corresponding to a time of 3.3 ms into the sampling 

period of the measurement, and extending 5 cm to either side of that point.   
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Figure 7.21: Partitioning of reconstructed OPD with an aperture (a) and 

the partitioned section (b). 

The x-position value of 0.5 m in this figure comes from the time of 3.3 ms multiplied by 

the convection velocity of 153 m/s.  Realistically, the frozen-flow approximation does not 

hold over the full 1.5-m range of the x-axis in Fig. 7.21 (a), but a smaller portion of the 

longer OPD series can be taken as a reasonable reconstruction of the wavefront seen over 

that smaller area at the associated sampling time.  Thus, the smaller portion appearing in 

Fig. 7.21 (b) can then be taken as an approximate reconstruction of the wavefront that 

would have been produced at a time of 3.3 ms, in a beam with a 10 cm diameter, centered 

at the 20.4 cm location in the flow.   
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The OPD series of Fig. 7.21 (a) is plotted vs. a position in x covering a range of 

almost 1.5 m, but the reconstruction is based on data recorded at  is actually arbitrary , a 

time of 3.4 ms corresponds to a position of  

In examining these wavefronts, it was made standard practice to remove the mean 

and net slope, also called piston and tip-tilt, from the wavefront within the defined 

aperture at each time step.  The initial purpose of this line of research was to examine the 

requirements of a corrective system, particularly for higher-order correction.  In the Notre 

Dame Adaptive Optics system, described in chapter 3, piston is considered to be 

irrelevant to the performance of the system, and a fast steering mirror serves to remove 

tip-tilt.  Higher-order distortions that remain after correction by the steering mirror are 

then left to a deformable mirror for correction, and it was these distortions that were 

originally of interest.  Figure 7.22 shows the process of removing piston and tilt from the 

portion of the reconstruction in the aperture.  This is done by performing a least-squares 

fit of the function y = a·x + b to the values of OPD(x) in the aperture, as shown in Fig. 

7.22 (a), and then subtracting the resulting equation from OPD(x).  The result of doing 

this to the example wavefront is shown in Fig. 7.22 (b). 
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Figure 7.22: Applying a linear fit to the reconstructed wavefront within an 

aperture (a) and the wavefront after T/T correction (b). 

As noted earlier, using a Malley probe with two beams, one upstream of the other, 

can reveal things about general qualities and particular components of the flow.  Fig. 7.23 

shows the power spectra of beam deflection for the two beams as recorded at a location 

of 3.9 cm.  Notable features of these spectra are the sharp spike at a frequency of 16.7 

kHz and a broad-band hump stretching from 5 kHz to 14 kHz, with a peak value near 8 

kHz.  
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Figure 7.23: Beam-deflection power spectra: upstream beam (a), 

downstream beam (b). 

Power spectral densities such as these are produced by performing a Fourier 

transform of the deflection data and multiplying the resulting complex values by their 

own conjugates, so that for a set of deflection values, θ(t), comprised of N points, 
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with )(ˆ tθ representing the fast-Fourier transform (FFT) of θ(t) and *)(ˆ tθ representing the 

complex conjugate of )(ˆ tθ .  The spectra shown in Fig. 7.23 and in the following sections 

of this chapter are averages of the spectra produced from 200 or more sets of data.  The 

averaging is used to produce cleaner, smoother spectra. 

With two beams, a spectral cross-correlation can be performed in the form of 
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The PSD produced by Eq. 7.12 has real values, due to multiplying the complex values 

produced by the Fourier transform or FFT by their own conjugates.  However, the cross-

correlation spectrum of Eq. 7.13 will have complex values, which can be expressed as 

magnitude and phase, of the form  
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With an assumption of frozen flow over the time required for sources of aberration to 

travel from the location of the first beam to a second beam some distance ∆x 

downstream, the phase of this cross-correlation PSD will be such that
14
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Figure 7.24 shows phase of the cross-correlation produced from the deflection 

data used in Fig. 7.23.  Over the range of frequencies corresponding to the broad-band 

hump seen in Fig. 7.23, the phase as a function of frequency does indeed take a form that 

can be approximated by a straight line, and the slope of this line indicates a convective 

velocity of 260 m/s for a measurement taken with beams 4 mm apart.  This indicates that 

the sources of distortion at this point are associated more with the high-speed stream than 
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with a fully-developed shear layer, whose aberrating structures travel at the slower 

convection velocity.   

 

Figure 7.24: Phase of beam-deflection cross-correlation. 

Also of interest is that the sharp peak in magnitude at 16.7 kHz has a corresponding 

phase which deviates significantly from that associated with near-by frequencies.  The 

sharpness of this peak is suspicious, compared to the broad-band nature of other features, 

but the phase difference is further indication that this peak has a source other than the 

shear layer, and should be ignored. 

As noted, the disturbances in the early stages of development for the shear layer 

are often more associated with the high-speed flow than with a convective velocity that 

reflects and average between the two flows.  For comparison, a deflection spectrum and 

phase plot from a measurement location of 12 cm is shown in Fig. 7.25.  A fit to phase 

for the frequencies associated with the hump of greatest activity indicates a velocity of 

approximately 140 m/s, which is more in line with the prediction of velocity in the shear 

layer based on the flow conditions.  For frequencies higher than this range the phase plot 



 

211 

shows a shallower slope, which is in line with the higher velocity of disturbances 

associated with the high-speed flow, possibly from the boundary layer on the upper 

surface of the test section. 

 

Figure 7.25: Phase of beam-deflection cross-correlation. 

7.4.2. Results 

A series of Malley probe measurements were made at various locations starting at 

0.7 cm downstream from the edge of the splitter plate, where the high- and low-speed 

flows first come into contact, out to 48.2 cm from the splitter plate, with a spacing of 

approximately 0.5 cm between measurement locations.  The displacement data from the 

position sensing devices in the Malley probe was sampled at a rate of 40 kHz, with 25 
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sets of 16384 points per set being recorded at each measurement location.  The two 

beams of the Malley probe were separated by a distance of 3.8 mm.  4
th

-order 

Butterworth filters were applied to remove signals below 500 Hz, which were dominated 

by physical vibration of the facility and optical bench, and signals above 18 kHz to 

prevent aliasing. 

A serious concern in taking these measurements was avoiding contamination of 

the optical data by other sources.  As noted in the previous section, performing a spectral 

cross-correlation and plotting the phase can identify features that are not associated with 

the shear layer.  Additionally, at some points during the collection of Malley probe data, 

the optical bench on which the optics comprising the Malley probe were fastened was 

briefly pulled sideways so that the beams of the Malley probe passed to one side of the 

test section, rather than through the test section and the flow it contained.  Despite 

passing the beams through still air, the sensors still recorded disturbances, most likely 

due to vibration of the equipment and electronic noise.  The PSDs associated with these 

signals are shown in Fig. 7.26 
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Figure 7.26: PSD of vibration and electronic noise data from the Malley 

probe. 

The highest noise peak seen in both beams is seen at 860 Hz, and is most likely a 

remnant of physical vibration outside the range of the 500 Hz high-pass filter intended to 

deal with vibration effects.  The narrow-frequency nature of the peaks seen at higher 

frequencies is suggestive of electronic noise, though it is not truly possible to separate 

physical effects from electronic effects in this noise data.  Comparing this to the spectra 

used as an example in Figs. 7.23 and 7.24, the large vibration peak at 860 Hz is only 1/3 

the magnitude seen in the broad-band hump associated with the effects of the shear layer, 

and lies outside the range of frequencies associated with that hump.  As will be shown 
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later, the optical-distortion effects produced by the shear layer shift to lower frequencies 

as the measurement location is moved downstream, but the magnitude associated with 

those distortions also grows larger, rendering this vibration noise insignificant by the time 

frequencies of that range become important to the measurements.   

There is a sharp spike at 17 kHz in the noise of the upstream beam that may 

correspond to the 16.7 kHz spike seen in Fig. 7.23, and the ability to identify such spikes 

as non-physical noise was demonstrated in the example using that figure.  Thus, the data 

from these measurements can be used with some confidence that noise corrupting the 

data can either be identified as such, or will have minimal impact on the results. 

In processing these data, a measurement location of 1.8 cm was the first point at 

which the PSDs show a clear hump of activity and the cross-correlation of the two beams 

showed a clear convection velocity associated with this frequency range.  Figure 7.27 

shows PSDs for deflection of the downstream beam, plotted to an arbitrary but 

proportional scale and shifted vertically to reflect the position of that beam for each 

measurement.  The downstream beam was chosen for this figure as less noise seems to be 

present in the data recorded for this beam, as seen in the spectra of Fig. 7.26. 
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Figure 7.27: PSD of beam deflection, shifted by position. 

The broad-band hump of activity in the spectra of Fig. 7.26 can be seen to shift to 

lower frequencies and increase in magnitude as measurement position is shifted 

downstream.  This trend becomes clearer with more measurement points further 

downstream added, as shown in Fig. 7.28.   

 

Figure 7.28: PSD of beam deflection, shifted by position. 
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This trend is to be expected if the disturbances are produced by the coherent 

structures associated with the shear layer, discussed earlier in chapter 6.  As noted in 

section 6.2.3, these structures grow and combine such that the streamwise length 

associated with one of these structures, Λ, is proportional to the distance downstream 

from the origin point of the shear layer.  Although the effective origin point for these 

structure may be at a slightly different position than the physical origin of the shear layer, 

due to changing dynamics at various stages in development.  Frequencies associated with 

these structures are determined by how swiftly the convection velocity carries them past 

the point of observation.  Therefore, if 

 x∝Λ  (7.16) 

and 

 Λ
= CU

f , (7.17) 

then 

 x
f 1∝ . (7.18) 

In the figures above, a number of local peaks can be seen at each measurement 

location, but these appear on top of a broad hump that not only shifts to lower frequencies 

with increasing distance from the splitter plate but grows in peak intensity with position.  

Again, if the pressure wells predicted by the WCM are the primary contributor to optical 

distortions then one would expect those distortions to get worse as the structures not only 

become larger but the pressure differences become more severe.  Some of the local peaks 

might be associated with noise of the sort shown in Fig. 7.26, but as addressed earlier, the 
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magnitude of such noise will not be large enough to obscure the broad-band hump 

representing the effects of the shear layer. 

The fact that the shear layer manifests as a broad hump rather than a sharp spike 

in these spectra is due to the shear-layer structures not being truly periodic, at least not 

without applied forcing to make them periodic.  As shown in Figs. 6.16 and 6.17, 

predictions from the WCM indicate that structures passing a given point at different times 

may be at different stages in their development.  In capturing the strobe-illuminated 

images in Fig. 7.12, it was not possible to “freeze” the illuminated structures with the 

strobe.  To the eye, the illuminated structures would move about jerkily and change shape 

in the same jerky fashion.  However, by matching the passage frequency or a sub-

harmonic of that frequency, these images would appear to settle down somewhat, relative 

to other strobe frequencies.  Fig. 7.13 shows the variations in the pattern of pressure 

changes seen at a single point over the course of a few cycles, but also uncovers a 

fundamental frequency in the ensemble average of several individual traces.   Likewise, 

the OPD reconstruction in Fig. 7.20 shows activity that is near-periodic over short 

periods, but tends to shift around some characteristic frequency over longer periods. 

There are different approaches to finding this characteristic frequency of the shear 

layer.  One approach is to use a weighted average of these frequencies, of the form 
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However, while this weighted average has been used in characterizing results of WCM 

simulations,
15

 it was found to be a poor choice in characterizing the data gathered from 

the physical shear layer in the WCSL facility.  As shown in Fig. 7.25, not all of the 
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disturbances recorded by the Malley probe are from the shear layer.  The flows in the test 

section also produce boundary layers on the upper and lower surfaces of the test section.  

Phase plots of cross-correlations indicate that the optical deflection and distortion effects 

associated with frequencies higher than those associated with the visible hump in the 

spectrum tend to have velocities closer to that of the high-speed flow than that of the 

shear layer.  Thus, an estimate of characteristic frequency based on the frequency with 

the greatest magnitude seen in the PSD for beam deflection was judged to be a more 

practical approach, although this required the elimination of noise-related peaks from 

consideration in some cases.  Figure 7.29 plots the peak frequency of these jitter-signal 

spectra as a function of position downstream from the origin of the shear layer.  The trend 

in frequency matches a 1/x pattern, which is consistent with expected behavior of this 

flow.   

 

Figure 7.29: Frequency with position and a/x +b fit. 
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The fits are actually performed only to the points more than 5 cm downstream 

from the origin.  As was noted in sections 6.2.2 and 6.2.3, the model of linear growth 

does not apply to the initial stages of development for a shear layer.  As was shown in the 

cross-correlation of Fig. 7.25, and has been confirmed by other researchers,
16

 the initial 

development of a shear layer often begins in the boundary layer associated with the high-

speed flow, as it takes time for the flow to assume the standard shear-layer profile often 

represented by a hyperbolic tangent.  A fit based on growth proportional to x has been 

performed on the points for which x < 5 cm, in accordance with the growth rate expected 

for that region.
16

   

Figure 7.30 shows the structure length estimated from the frequencies in Fig. 7.29 

and the convection velocity from Eq. 7.17.  Equation 6.22 in section 6.2.3 gave an 

expected growth rate for shear layers in terms of the visual thickness, δvis.  This equation 

requires the ratio of densities in the flows, as well as the ratio of the velocities of the 

flow.  For Mach numbers of 0.88 and 0.06, the static pressure in the test section, and a 

total temperature in each flow equal to that in the room the air is drawn from, the density 

of each flow can be calculated to be 1.01 kg/m
3
 in the high speed flow and 0.70 kg/m

3
 in 

the low speed flow.  From this and the velocities of 285 m/s and 22 m/s, Eq. 6.22 predicts 

a growth rate of d(δvis)/dx = 0.27.     Sources
17,18

 on this subject do not agree on the ratio 

between this thickness and the streamwise spacing between vortical structures, giving 

ratios varying from 1.5 to 2, which in turn indicate the growth rate for dΛ/dx could range 

from 0.40 to 0.54.  The linear fit in Fig. 7.30 has a slope of 0.54, corresponding to a ratio 

close to 2 between Λ and δvis. 
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Figure 7.30: Characteristic Λ and linear growth rate. 

One of the purposes of this study was to examine the requirements for optical 

correction of compressible shear layers, with the intent of using the adaptive optic system 

shown in Fig. 3.1 for this correction.  Part of the design of this system, and of many 

corrective systems, is that the correction takes place in two stages.  First, there is tip-tilt 

(T/T) correction with a fast steering mirror to center the beam on target, and then a 

deformable mirror is used to deal with wavefront distortions that remain after the T/T 

correction.  Therefore, it was useful to examine the results with regard to this residual, 

higher-order distortion. 

Fig. 7.31 shows the time-averaged rms OPD with T/T removed, as reconstructed 

from the data taken at various streamwise positions.  Error bars are not shown as the 

uncertainty in these measurements as shown on this figure would be smaller than the size 
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of the symbols used to graph the data on this figure.  There are five separate curves in this 

figure, but all of them are based on the same data recorded at those positions.  The 

difference in the curves is the size to which the aperture was set in reconstructing the 

OPD from the recorded beam deflections.  An aperture of 300 cm can effectively be 

considered an infinite aperture, relative to the structures in the flow, and for that aperture 

size OPDrms grows almost linearly with position.  However, applying a smaller aperture 

to the data reduces the magnitude of the OPDrms seen within that aperture.  Additionally, 

the shape of the curves produced changes from something close to a straight line to a 

curve of decreasing slope that levels off at some point.  After observing this effect in the 

reconstructed data, an exploration of the reasons behind this was undertaken, which is 

described in the next chapter. 
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Figure 7.31: Optical aberration from a shear layer, varying with position 

and aperture size. 
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CHAPTER 8:  

EFFECTS AND REQUIREMENTS OF CORRECTION 

8.1. Overview 

A number of guidelines to predict the effectiveness of systems for optical 

correction were given in chapter 4, particularly section 4.3.  However, these were 

specifically based upon the characteristics of free atmospheric turbulence in a state of 

effective equilibrium.  Chapters 5, 6, and 7, explored the optical effects and some aspects 

of the underlying fluid dynamics for compressible flows that might be found in the 

vicinity of an aircraft, particularly shear layers.  In the course of this studying these flows, 

termed aero-optic flows to distinguish them from atmospheric turbulence, it was made 

clear that many of the underlying assumptions used in characterizing atmospheric 

turbulence do not apply to aero-optic flows.  Likewise, the guidelines for designing and 

predicting the performance of corrective systems presented in chapter 4 are not useful in 

dealing with aero-optic flows, as they are based on parameters such as 2

nC or the Fried 

parameter (r0) that are not meaningfully defined for cases other than atmospheric 

turbulence. 

To find guidelines for the design of optically corrective systems for dealing with 

the effects of non-Kolmogorov flows, it has proven useful to go back to basics in some 

regards.  This begins with a simplifying assumption that the optical disturbances can be 
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represented as a sinusoidal function.  This is quite true for some forms of aero-optic 

flows, particularly ones that have been intentionally regularized with artificial forcing.  

Admittedly, this is a very simplistic approximation, but as will be shown in chapter 9, the 

results produced with this approximation have proven to be applicable even to conditions 

where the assumption itself does not apply.  

With this assumption, modeling correction for tip-tilt (T/T) or other forms of 

correction becomes relatively easy.  In particular, finding the average effect of correction 

for an average level of distortion can be found and expressed as a magnitude gain of a 

transfer function for the corrective system, dependent on the frequency of the 

disturbances to be corrected.  

8.2. Assumption of a Sinusoidal Wavefront 

As noted in chapter 6, the character of a shear-layer flow tends to be dominated 

by large vortical structures, and at a given streamwise location these structures tend 

towards a certain size and spacing, based on the thickness of the shear layer at that point.  

This aspect of the theory presented in chapter 6 was verified in the experimental results 

of chapter 7, such as the ensemble-averaged pressure measurements at a fixed position in 

Fig. 7.13 and the frequency hump that moves with position in the spectra of Figs. 7.27 

and 7.28.  The peak values of the data used in Figs. 7.27 and 7.28 were in turn used to 

produce the estimates of overall structure size in Fig. 7.30, which fall within the predicted 

range for shear layer growth rates.   

From these results, it might seem plausible to approximate the optical 

disturbances of shear-layer flows by using a sine wave of the appropriate frequency and 
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amplitude.  However, as can be seen in Fig. 7.13, the pressure fluctuations associated 

with a single trace have some quasi-periodic characteristics.  Although the nature of a 

single trace of recorded pressure is quite different from the steady frequency and smaller 

amplitude of the ensemble averages, it is still somewhat sinusoidal, at least over a time 

period of one or two cycles of that sinusoid.  The reconstruction of OPD shown in Fig. 

7.20 has similar characteristics.  The variations in frequency and amplitude of a trace of 

pressure or OPD are consistent with the broadness of the peaks in Fig. 7.28 indicating a 

range of wavelengths around the most probable frequency being averaged together.   

Then again, periodic signals and even finite intervals of non-periodic signals can 

be approximated by a summation of sine and cosine functions.  Additionally, shear layers 

are susceptible to forcing.  Oster and Wygnanski
1
 found that applying forcing, in the form 

of a moving flap at the initial point of a shear layer where the two streams first come into 

contact, will force a shear layer to grow more quickly than it would without such 

intentional perturbations.  They also found that this higher growth rate persists only until 

it reaches a certain thickness, determined by the frequency of the forcing, and that 

thickness will remain nearly-constant for some distance down stream until the flow 

arrives at the location at which that thickness would be reached by the normal, unforced, 

growth rate, as shown in Fig. 8.1. 
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Figure 8.1: Momentum thickness of forced shear layers. (Oster and 

Wygnanski, 1982)
1
 

This phenomenon has been further explored and expanded upon,
2,3,4

 indicating 

that the period of steady layer thickness also represents a regularization of the rolling 

vortices in the shear layer, producing a coherent train of structures with greater 

uniformity in size and spacing.  Reference [4] indicates that the initial roll-up point 

described in section 6.2.2 is unaffected by forcing of this nature, but thereafter the rollers 

tend to combine in groups of three or more, rather than the usual pairing, producing the 

increased growth rate and the train of relatively large and regular structures in the 

following region.   

Work by others at Notre Dame has supported this view of shear layer behavior, 

both computationally,
5
 and experimentally.

6,7
  Simulations using the weakly-

compressible model indicate the existence of clear, regular structures and greatly 

regularized optical distortions associated with those structures.  Figure 8.2 below shows 
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examples of computational results from the weakly-compressible model (WCM) of an 

unforced and a forced shear layer.  Figure 8.3 shows beam-jitter at a position of 0.415 m 

in the simulation for unforced and forced cases, indicating a very close match in form 

between the sinusoidal forcing and the narrow beam deflection during forcing.  

 

Figure 8.2: WCM realizations of a shear layer without forcing (left) and 

with forcing (right).  (Nightingale, 2005)
5
 

 

Figure 8.3: Normalized beam jitter according to WCM realization of a 

shear layer without forcing (left) and with forcing (right).  (Nightingale, 

2005)
5
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Figure 8.4 shows a reconstructed wavefront from optical experimental data taken 

through a M 0.78 shear layer being forced at the trailing edge of the splitter plate.  While 

the reconstructed OPL from the experiment is not as close to a pure sine wave as the 

simulated beam jitter in Fig. 8.3, it does show a fairly steady base frequency. 

 

Figure 8.4: Segment of OPL history for 800 Hz, forced shear layer at x = 

570 mm. (Rennie, 2006)
6
 

Additionally, research by others at Notre Dame has lead to the successful use of a 

sinusoidal approximation for real-time optical correction of a forced low-speed heated 

jet.
8
  Plans for automated application of the same basic corrective system to a high-speed 

shear layer are also under development, with encouraging results in simulation.
9,10

 

In light of these results, a sinusoidal approximation of wavefronts is certainly 

justifiable for shear layers under forcing.  Additionally, with Fourier series and power 

spectra representing optical phenomena as sets of sinusoidal components, there is reason 

to hope that some of the results found by using this approximation may be applicable to 

non-regularized flows as well. 
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8.3. Tip-Tilt Correction within an Aperture 

Tit-Tilt (T/T) and correction for T/T were addressed in sections 3.2 and 3.4.1.  To 

reiterate here, tilt may be defined as Z-tilt, which is a linear fit to the wavefront itself, or 

as G-tilt, which is an average of the local gradient at each point on the wavefront.  

Correcting for G-tilt is best for putting the centroid of the associated far-field pattern on a 

target point.  Correcting for Z-tilt is best for minimizing overall actuator stroke if the 

corrected wavefront is to be passed on to a higher-order corrective system, as is the case 

in the ND AO system shown in Fig. 3.1 on page 48.  For this reason, the work performed 

at Notre Dame has focused on Z-tilt correction.   

In applying T/T correction to a sinusoidal simulation of a wavefront, an 

interesting aspect of such correction becomes apparent.  Figure 8.5 shows an example of 

an aperture in one dimension admitting a sine shaped wavefront.  In this instance, the 

length scale of the variations on the wavefront is larger than the aperture.  The portion of 

the wavefront over this aperture has relatively little curvature, and performing T/T 

correction based on Z-tilt leaves a nearly-flat remnant in the aperture, and the resulting 

far field pattern is close to the diffraction-limited ideal. 
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Figure 8.5: T/T correction for distortions with a long length scale. 

Figure 8.6 repeats this example with sinusoidal wavefront aberrations of a length 

scale smaller than the aperture.   

 

Figure 8.6: T/T correction for distortions with a short length scale. 

Both wavefronts have the same magnitude of aberration, and will have the same 

average OPDrms over time if the source of that aberration is in motion relative to the 

optical path.  The uncorrected far field in both cases has Strehl ratio (on axis intensity 

relative to the diffraction limited case) of about 0.8, which fits with the prediction of the 

large-aperture approximation, 



 

231 

 

2

2
2









−

−
=≅

rmsOPD

eeSR λ

π
σϕ

. (8.1) 

However, this may be a fluke as the term “large-aperture” in the name of the 

approximation indicates that the aperture should be significantly larger than the length 

scale of the major optical distortions, which is clearly not the casein Fig. 8.5. 

However, effects of T/T correction are quite different for these two cases.  In the 

case with a longer length scale for the disturbance, the overall amplitude of the wavefront 

aberrations in the aperture is greatly reduced, and the far field intensity pattern associated 

with the corrected near field wavefront shifts to bring the point of highest intensity back 

in line with where the center of the diffraction limited pattern would be.  It should be 

noted that the form of the far field intensity pattern is not actually changed, but merely 

shifted to a new location.  This is an inherent trait of T/T correction that will be explored 

further in latter sections.  For now, it is sufficient to note that T/T correction tends to have 

a greater impact for disturbances with a length scale larger than the aperture over which 

the correction is being performed. 

8.3.1. Simple Simulated Correction 

Figure 8.7 was generated by using a pure sine function of extended coherence 

length as the beam deflection, θ.  Each point is the time-averaged OPDrms, after T/T 

removal for a fixed period (Λ) of the sinusoidal jitter and a fixed size of aperture (Ap).  

Each set of points shares a common value for Ap while Λ varies. 
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Figure 8.7: T/T corrected OPD for simulated sinusoidal disturbances. 

For an infinite aperture, the average OPDrms grows linearly with Λ, much as the 

OPDrms of the experimental results with a large aperture grew linearly with position in 

Fig. 7.31.  This is a natural consequence of the method of wavefront reconstruction.  As 

was addressed in section 3.3.3, the deflection angle of the narrow beams used in this 

study correspond to the local slope that would be seen in a continuous wavefront,    

 
dx

tdOPL
tx

)(
)( −=θ . (8.2) 

Reconstructing the wavefront is then a matter of integrating this derivative.  The data 

represented by θ is a time series, but can be translated into a set of points in space via the 

convection velocity,   

 ∫ ∫∫∫ −==== dtUdtU
dx

tdOPL
dt
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If θ is a sine wave, as it was in this very simple simulation, then  
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As frequency corresponds to structure size by f = UC / Λ,  
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The rms value of this is then  

 
π22

)(
K

tOPLx Λ= . (8.6) 

which is proportional to Λ as seen in Fig. 8.7.  

However, when a finite aperture with T/T correction is imposed on the 

reconstructed wavefront in this simulation, then the OPDrms follows the linear grown 

trend only for apertures smaller than the structure size.  As Λ approaches Ap, OPDrms 

levels off, reaches a maximum around Λ = Ap, and then tapers off asymptotically as Λ 

increases.  As was shown in Figs. 8.5 and 8.6, T/T correction is more effective for 

wavefront distortions with a longer length scale, but does little for distortions with a 

length scale such that Λ < Ap. 

One striking feature of this behavior is that the curves indicated on Fig. 8.7 for 

finite apertures seem to have self-similar shapes.  The scaling of these shapes is directly 

tied to Ap in the axis for Λ, and the effect shown in Eq. 8.2 through 8.6 produces a similar 

scaling of OPDrms with respect to Λ and thence to Ap.  Both Λ and OPDrms have units of 

length, as does Ap.  If the values of Λ and OPDrms in Fig. 8.7 are non-dimensionalized by 

Ap, then the simulated results collapse onto one curve, shown in Fig. 8.8. 
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Figure 8.8: Non-dimensionalized results for sinusoidal disturbances. 

This result is promising, as scaling laws are valuable tools in applying laboratory 

results to field applications, but the use of a sine wave as an approximation for the 

disturbances is only an approximation.  This needs to be linked more directly to the flow 

with theory and backed up with experimental data.   

8.3.2. Optical Scaling for Shear Layers 

The preceding section defined OPL in terms of the deflection angles often 

measured and used to reconstruct OPL.  As addressed in section 2.3.1, a more proper 

definition of OPL is the integral of the index of refraction along a beam’s path, which for 

air is a function of density. 

 ∫∫∫ ∆++=∆+≅∆+= dssKdssndssnnxOPL GD )))((1())(1())(()( ρρ  (8.7) 
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From there it follows that the magnitude of variation in the OPL, which is OPD, will be 

proportional to the integral of density variations through the flow field.   

∫∫ +−∆++≅−= dsKdssKOPLxOPLxOPD GDGD ))(1()))((1()()( ρρρ  

 ∫ ∆= dssKGD ))(( ρ  (8.8) 

For isentropic flows, changes in density are proportional to changes in pressure 

and inversely proportional to changes in temperature.  From work with the WCM, and 

even the preliminary calculations starting on page 153 in chapter 6, the pressure drop 

inside a vortical structure of a shear layer is approximately proportional to the square of 

the characteristic velocity.  Thus, one can find an extending chain of equalities and 

proportionality, 
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where UC = (U2-U1)/2 and is the characteristic velocity of the structures, a is the local 

speed of sound, and MC is a convective Mach number.  OPD, as noted above, is 

proportional to an integral of ∆ρ over some distance, which in turn will be proportional to 

the magnitude of the changes in density and the length over which those variations are 

integrated.  As a definition of thickness, δω or δvis should be proportional to the size of the 

rollers and to each other and so are certainly proportional to the significant integration 

length for this case: 

 visCGDvisGDGDrms MKKdyKOPD δρρδρ 2∝∆∝∆∝ ∫ . (8.10) 

A more thorough exploration of the density and Mach number aspects of this 

relationship can be found in a paper by Fitzgerald.
11

  From the exploration of shear-layer 
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dynamics in chapter 6, particularly Eq. 6.22 on page 151, δvis is proportional to x and by 

the definition of δvis as the apparent size of the visualized shear layer; Λ is likely to be 

proportional to and on the order of δvis: 

 xMMOPD CCrms

22 ρρ ∝Λ∝ . (8.11) 

Thus, if OPDrms does indeed scale with Λ, as it did in the model associated with 

Figs. 8.7 and 8.8, then it should scale with position in a similar manner, especially as the 

average density and convective Mach number should be constants in the flow produced 

in the ND WCSL facility.  If the finite aperture and T/T removal apply over a mix of 

frequencies as well as a distortion in the form of a sine wave, then all the salient points in 

the sine function test that make the scaling work should be present in a physical shear 

layer and optical system.  Thus, for a given set of flow conditions, there is reason to hope 

that there is some function, g, such that 
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It is left now to examine some actual optical data to see if this does apply to a real 

system. The results for OPDrms with T/T correction and varying aperture size were shown 

in Fig. 7.31, and are shown again in Fig. 8.9 below.  There are some similarities in the 

behavior of data points shown in Fig. 8.9, and the simulation results in Fig. 8.7.  An 

aperture of 300 cm can effectively be considered an infinite aperture, and for that 

aperture size, OPDrms reconstructed from the data grows almost linearly with position, as 

it did in the simplified simulation.  Also note that from Fig. 7.30 on page 220, Λ reaches 

5 cm in length at a position somewhere around 11 cm, and in Fig. 8.9, the data points for 

OPDrms values generated with a 5 cm aperture begin to level off at about that point. 
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Figure 8.9: Optical aberration from a shear layer, varying with position 

and aperture size. 

From the results of the simulation in Fig. 8.8, one might expect the data points to 

fall off at downstream positions where the characteristic structure length is larger than the 

aperture.  However, as can be seen in the power density spectrums for the beam 

deflection data in Fig. 7.27 and 7.28, on page 215, the data includes high frequency 

effects as well as the lower frequencies associated with the pressure wells in the rollers.  

This may be caused by smaller irregularities and vortices that roll up into the larger 

structures; however, the boundary layer forming and growing along the upper surface of 

the test section with the high speed flow is also a likely contributor in this regard.
12

  The 

effect of the aperture with T/T correction does not remove these smaller scale optical 

distortions.  Despite these differences, applying the same practice of non-
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dimensionalization to the data produces a similar collapse onto a single curve.  This is 

very encouraging as the data used in this figure is taken from an unforced shear layer for 

which the sinusoidal approximation is questionable, but the results arrived at using that 

approximation still apply. 
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Figure 8.10: Non-dimensionalized Shear Layer Results. 

8.4. The Aperture Filter 

The phenomenon of a spatial filter producing a clean image or far-field pattern 

has been observed experimentally for some time, and can be traced back thousands of 

years in the writings of various natural philosophers concerning variations on the pinhole 

camera.  As was shown in chapter 2 and in section 8.3, higher-frequency features of a 

wavefront tend to produce sidelobes in a far-field pattern, which is also seen when the 

light is brought to a focal point by a lens or other means.  A small aperture placed at such 
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a focal point will physically block these sidelobes, and the wavefront propagating away 

from this aperture will likewise lack the higher-frequency features that produced those 

sidelobes. 

The examples of T/T correction for sinusoidal wavefronts in sections 8.3 and 

8.3.1 demonstrated that passing a wavefront through an aperture can also remove 

features, or at least change how those features are seen over the limited area of the 

aperture.  Because of this, T/T correction within an aperture tends to have different 

effects for different relative sizes of the disturbance to be corrected, Λ, and the aperture 

over which the correction is to be performed, Ap. The aperture serves as a spatial filter, 

separating the effects of disturbances into those that are primarily T/T when Λ > Ap, and 

those that would require higher-order correction effects when Λ < Ap.  If the sources of 

these distortions are in motion relative to the optical path then this spatial length scale 

will be associated with a temporal frequency by the relationship 

 
Λ

= CU
f , (8.13) 

in which UC indicates the convective velocity perpendicular to the optical path.   

8.4.1. Filter Gain 

Filters are commonly characterized by their frequency response.  For physical 

systems, this function can be found experimentally by feeding signals of known 

frequency into the system and measuring the result.  The gain of the frequency response 

is the ratio between the input signal and the resulting output.  This approach follows in 

the footsteps of Greenwood
13,14

 in dealing with a corrective system in terms of how it 

deals with different frequencies of disturbance, as was described in section 4.3.2.  It also 
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has parallels with an approach used and expanded upon by Robert Tyson.
15,16

 However, 

both the original analysis by Greenwood and the ongoing work by Tyson have been 

oriented primarily towards the atmospheric turbulence, and once a set of guidelines for 

that case has been developed, the analysis and principles used in developing those 

guidelines tend to be forgotten.  Additionally, Greenwood and Fried treated the problem 

stochastically, based on structure functions, while Tyson’s work is based on Fourier 

transforms.  Although these approaches have some benefits in performing the associated 

mathematical operations, I prefer to work in the domains of standard time and space as an 

aid to understanding what is happening physically. 

The phenomenon of a spatial filter cleaning up an image or far field pattern has 

been observed experimentally for some time, and can be traced back thousands of years 

in the writing of various natural philosophers concerning variants of the pinhole camera.  

On the other hand, while ; a more precise definition of the can for this filter can be found 

analytically.  For a one-dimensional wavefront in the form of OPD(x,t), observed over an 

aperture of size Ap, the OPDrms is: 
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The residual OPDrms over the aperture after T/T removal is 
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where A and B are coefficients defining the tilt and piston being removed.  Z-tilt is 

defined as a linear fit to the wavefront and corresponds to values of A and B that 

minimize Eq. 8.15.  These values can be found by taking the derivative of Eq. 8.15 with 
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respect to these coefficients, which will identify potential minimums at locations where 

these derivatives equal zero. For this purpose is sufficient to do this for just the integral 

within Eq. 8.15: 
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For a given wavefront, OPD(x,t), this is a set of two equations and two unknowns with 

the solution: 
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As addressed in section 8.2, the expected wavefront produced by propagation 

through a shear layer may be approximated with a sine function.  As a frequency 

response is sought for this effect, it makes sense to do so again; 
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With this substitution, the minimizing values for A and B are found to be: 
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With Eqs. 8.20, 8.21, and 8.22, expressions for the uncorrected and corrected OPDrms of 

Eqs. 8.14 and 8.15 can be found.  However, a more meaningful quantity for comparison 

is (OPDrms)
2
.  As was addressed in chapter 3, if a wavefront is represented as a one-

dimensional waveform, as has been done in this analysis, then the net disturbances in the 

wavefront and the power spectrum of that waveform (PSDW) are related by 

 dffPSDOPD Wrms ∫
∞

∞−

= )(2 . (8.23) 

As noted previously, the approach by Greenwood
14

 in defining the frequency that 

bears his name was to treat a corrective system as having a transfer function.  If that 

transfer function is defined as G(f), then the disturbance remaining after correction is 

applied will be 
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The power spectrum of a sinusoid with amplitude K and frequency UC/Λ, such as the one 

defined in Eq. 8.20 and used for the wavefront, would be: 
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One of the defining characteristics of the Dirac delta function (δ) is that an integration of 

a product of this function with another function equals the value of the second function at 
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the “trigger point” of the delta function.  Therefore, the expected uncorrected OPDrms 

would be 
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The power spectrum of Eq. 8.25 assumes an effectively infinite aperture, but this 

is also the result found in averaging the OPDrms across a finite aperture over one or more 

full cycles in time. 
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This is in line with Parseval’s identity: 
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for which )(ˆ fh is the Fourier transform of h(t).  

A transfer function, such as G(Ap,f) is commonly defined as a ratio of an output 

from the system to the input to the system that produced that output.  In terms of time-

averaged values, this would be 
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This also fits with the spectral approach,  
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Assuming that G(Ap,-f) = G(Ap,f), which is true for most frequency-dependent systems,  
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Which indicates that  
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which is the same result as was found by the use of time-averaged values in Eq. 8.29. 

Combining equations 8.15 through 8.22 and averaging over time produces the 

result of  
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The non-denominational quantity Ap /Λ appearing in Eq. 8.33 is useful for 

envisioning what happens in the aperture during correction, with values less than one 

indicating circumstances like those shown in Fig. 8.5 while a ratio greater than one would 

correspond to the shorter distortion length scales shown in Fig. 8.6.  Additionally, by the 

relationship f = UC /Λ, it acts as a non-denominational indicator of frequencies of the 

disturbance in the form of a Strouhal number based on the length scale of the aperture. 
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Applying the definitions for the transfer function from Eqs. 8.29 and 8.32 leads to 

the following expression for the effective gain of T/T correction over a one-dimensional 

aperture: 

 
( )

( )
( ) ( )

( )
( )

( )4

2

32

2 sin3cossin6cos21
1)(

Ap

Ap

Ap

ApAp

Ap

Ap

Ap
St

St

St

StSt

St

St
StG

π

π

π

ππ

π

π
−+

+
−= . (8.35) 

This gain function is plotted in Fig. 8.11, along with markers to show that the 50% (3-dB) 

cutoff of this system is found around StAp ≅ 0.85. 

 

Figure 8.11: System gain for T/T correction over a one-dimensional 

aperture. 

A common practice in dealing with a filter frequency response or other form of 

system transfer function is to plot it in log-log scale or decibels against a logarithmic 

scale, as had been done for Eq. 8.35 in Fig. 8.12.  In this form, it is often easy to see how 
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an otherwise complicated function can be approximated by simpler functions of the form 

a(x
b
) over certain ranges of x.  In Fig. 8.11, it is fairly obvious that for values of StAp 

greater than the cutoff point, G(StAp) approaches a value of one, or 0 dB, as T/T 

correction becomes ineffective in dealing with disturbances of a shorter length scale.  In 

Fig. 8.12, it can be seen that for values of StAp smaller than the cutoff point, the function 

has a logarithmic “slope” of 40 dB per decade, indicating that it can be approximated as a 

function of StAp to the 4
th

 power.  

 

Figure 8.12: System gain for T/T correction over a one-dimensional 

aperture. 

More specifically, a Taylor series expansion of Eq. 8.35, or of the trigonometric functions 

within that equation, reveals that 
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for small values of StAp.  
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8.4.2. Two-Dimensional Circular Aperture Filter 

The shear layer experiments that were performed at AEDC and the ND WCSL 

facility described in this dissertation have dealt with one-dimensional wavefronts aligned 

in the direction of the flow.  However, the majority of applications requiring T/T 

correction involve a beam or optical viewing path with a two-dimensional cross-section, 

which is often circular.  The analysis of the proceeding section for a one-dimensional 

aperture can be repeated for T/T corrections over a two-dimensional circular aperture, 

replacing Eqs. 8.14 and 8.15 with  
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As with the one-dimensional aperture, the definition of Z-tilt correction is such 

that the coefficients A, B, and C are set to values that minimize the integral in Eq. 8.38.  

The full derivation of the gain function for Z-tilt correction over a circular aperture can 

be found in section B.4.2 of appendix B.  For the purposes of the exploration in this 

chapter, it is sufficient to provide the resulting gain function found at the end of this 

derivation, which is:  
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in which J0 and J1 indicate Bessel functions of the first kind.  The two-dimensional gain 

is plotted in Fig. 8.13 and has a 3-dB cut-off at StAp ≅ 0.93. 

 

Figure 8.13: System gain for T/T correction over a two-dimensional 

aperture. 

Plotting the gain in decibels and a Taylor series expansion indicates that the function G = 

1.52(StAp)
4
 serves as an approximation for Eq. 8.39 below the cutoff frequency. 
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Figure 8.14: System gain for T/T correction over a two-dimensional 

aperture. 

8.4.3. G-Tilt Aperture Filters 

As noted previously, Z-tilt is not the only definition of tilt.  G-tilt is defined as the 

average of the local gradients at each point of the wavefront over the aperture, so that 
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The negative sign in front of the integral in Eq. 8.40 reflects the fact that OPD is the 

conjugate of the wavefront, having equal magnitude (for a medium in which n ≅ 1) but 

opposite sign.   

For correction of G-tilt, one can again define a one dimensional aperture and 

correction over that aperture such that  
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However, for correcting G-tilt as defined in Eq. 8.40, the coefficient B is selected so that  
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which leads to 
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The coefficient A(t) corresponds to piston and has no effect on G-tilt.  G-tilt 

correction is primarily intended to shift the centroid of a far-field pattern to a target point, 

and average piston has no effect on the far-field pattern.  Technically, piston does not 

affect Z-tilt either, except that piston corresponds to the 0

0Z Zernike mode which is 

normally removed before defining the 1

1Z and 1

1

−Z modes which correspond to tilt.  For the 

sake of comparison with Z-tilt, A(t) will be defined as to remove the mean piston from 

the corrected wavefront.  The rest of this derivation can be found in detail in section 

B.5.1 of appendix B.  The end result of this derivation is a gain function of  

( )
( ) ( )

( )
( )( )

( ) 









 −
−+−=

2

2

2
cos1

9
cossin

6cos4
3

1
)(

Ap

Ap

Ap

ApAp

ApAp
St

St

St

StSt
StStG

π

π

π

ππ
π . (8.45) 



 

251 

Equation 8.45 is plotted in Fig. 8.15, and has a 50% cutoff of StAp ≅ 0.77.  Of 

particular note is that for StAp > 1, the gain becomes larger than one.  This means that 

when dealing with distortions in the wavefront with a length scale smaller than the 

aperture, not only is G-tilt correction not effective in lowering the average OPDrms within 

the aperture, but it may actually increase it, which is likely to produce a reduction in 

Strehl ratio according to the large-aperture approximation of Eq. 8.1.   

 

Figure 8.15: System gain for G-tilt correction over a one-dimensional 

aperture. 

Figure 8.16 shows an illustration of why this is so.  By definition, Z-tilt minimizes 

OPDrms, but this is not the definition of G-tilt.  Correcting G-tilt for a sinusoidal 

waveform with a period shorter than the aperture over which the correction is to take 

place, as shown in Fig. 8.16, may actually induce a significant degree of Z-tilt that was 

not present and so increase the overall OPD.  Note that the gain in Fig. 8.15 goes to unity 
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for integer values of StAp and tends to be greater than one for other values where the 

disturbance length scale does not divide evenly into the aperture length.   

 

Figure 8.16: G-tilt correction for Ap > Λ. 

As G-tilt correction moves the centroid of the far-field pattern to a fixed spot, a 

view of the effects in the far field may also aid in understanding this phenomenon.  

Figure 8.17 shows the far-field intensity patterns for the corrected and uncorrected 

wavefronts of Fig. 8.16.  The Fourier-transform aspects of far-field propagation cause 

energy to be transferred from the central lobe to sidelobes in this pattern.  Shorter length 

scales of wavefront distortions are associated with sidelobes further from the main lobe 

or intended target point.  The way in which the aperture in Fig. 8.16 contains a non-

integer number of cycles of the disturbance causes more energy to be transferred to one 

side than the other.  Under such circumstances, the centroid of the pattern is located 

partway between the peak of the center lobe and the peak of the large sidelobe.  Shifting 
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the pattern to put the centroid on the target point actually shifts the main energy-

containing lobe of the pattern off of the target point, reducing the intensity at that point. 

 

Figure 8.17: Far-field effects of G-tilt correction for short length scales. 

Figure 8.18 plots Eq. 8.45 in log-decibel form, and a Taylor series expansion 

indicates that G = 2.16(StAp)
4
 serves as an approximation for G-tilt correction below the 

cutoff frequency. 
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Figure 8.18: System gain for G-tilt correction over a one-dimensional 

aperture. 

As with Z-tilt, G-tilt correction can also be applied over a circular aperture, and in 

fact most applications outside the laboratory will involve apertures of this sort.  The full 

derivation is presented in section B.5.2 of appendix B, with the end result of  
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Equation 8.46 is plotted in Fig. 8.19 and shows the same sort of behavior with higher 

values of StAp as was seen for the one-dimensional case, in that it reaches values greater 

than one.  On the other hand, the amplitude of the initial overshoot past G(StAp) = 1 is not 

as large and the function seems to approach a steady value of G(StAp) ≅ 1 more quickly 

than the one-dimensional case.  The 50% cutoff for this function is found at StAp ≅ 0.88 
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Figure 8.19: System gain for G-tilt correction over a circular aperture. 

A Taylor series approximation and plotting the gain in log-decibel form indicates 

that G = 1.52(StAp)
4
 is a good approximation for Eq. 8.46 with small values of StAp.  

Interestingly, the same functions found as approximations for Z-tilt correction across one-

dimensional and circular apertures serve as an adequate approximation for G-tilt over 

roughly the same range.  So it would seem that the tendency to equate G-tilt and Z-tilt in 

many works and applications is not unreasonable, but only over a range of values in StAp 

that corresponds to disturbances that are primarily T/T in nature.  
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Figure 8.20: System gain for G-tilt correction over a circular aperture. 

8.4.4. Piston-Only Correction 

Before pressing onward to higher-order forms of correction, it may be useful to 

take a step back, and look at correction for piston alone.  As will be addressed later, some 

higher-order corrective systems are based on localized piston-only correction.   

Additionally, there are some applications that are naturally piston-corrected in 

that piston has no effect on the aspects of interest.  This is notably true when resolution or 

intensity in the far-field is the goal.  The far-field intensity pattern produced by a near-

field wavefront is unaffected by the average phase or OPL of that wavefront.  A 

wavefront of constant phase across an aperture will produce a diffraction-limited pattern 

in the far field.  It does not matter what that phase is, provided it is the same value at all 

points in the aperture.  Only variations in phase and deviations from this mean value have 

any effect on the far-field pattern.  This is why the approximation for the Strehl ratio in 

Eq. 8.1 is known as the large aperture approximation; it assumes that the aperture is 
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larger than the length-scale of the optical distortions.  If the length-scale of the distortions 

is larger than the aperture, then those distortions may manifest partly or even primarily as 

piston across the aperture. 

Therefore, if Strehl ratio or other aspects of the far field intensity pattern are of 

primary concern, then a wavefront passing through a finite aperture may already be 

considered piston-corrected, and is subject to the same sort of filtration effect as was seen 

for T/T correction.  The derivation is similar to that for Z-tilt or G-tilt correction but 

setting the B(t) coefficient for tilt to zero, and can be found in full detail in sections B.3.1 

and B.3.2 of appendix B.  The end results of these derivations are gain functions of  
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for a one-dimensional aperture and  
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for a circular aperture. 

Both these gain functions are plotted in Fig. 8.21.  The one-dimensional case has 

a 50% cutoff of StAp ≅ 0.45 and the gain for a circular aperture has its cutoff at StAp ≅ 0.52.  

Also of potential interest are the points at which the functions reach 90%, which are 

StAp ≅ 0.74 for the one-dimensional aperture and StAp ≅ 0.87 for the circular.  These may 

be used as an indicator of the beginning of the range for which the large-aperture 

approximation of Eq. 8.1 applies.  For that matter, whenever integrating a power 

spectrum to find the phase variance, as in Eq. 8.23, for the purpose of using the phase 

variance in the large aperture approximation of Eq. 8.1, the spectrum should be filtered 
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with the appropriate piston-correction gain function.  The piston-component of wavefront 

variations has no effect on the far-field pattern or Strehl ratio.  

 

Figure 8.21: System gain for piston correction over one-dimensional (left) 

and circular (right) apertures. 

The piston-correction gain functions are plotted again in Fig. 8.22 in decibel vs. 

log-scale form, with curves of G = 3.29(StAp)
2
 and G = 2.47(StAp)

2
 serving as adequate 

approximations for these functions below their cutoff values of StAp. 

 

Figure 8.22: System gain for piston correction over one-dimensional (left) 

and circular (right) apertures 
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8.5. Higher-Order Correction 

In some applications, particularly ones intended to track an object or target of 

some sort, T/T correction may be the only form of correction applied.  In other 

applications, such as the Notre Dame Adaptive Optics System described in Chapter 3, 

T/T correction may be a single stage in the process.  Figures 8.5 and 8.6 show examples 

of a properly of T/T compensation, in that it does not change the intensity pattern seen in 

the far field, but can only shift its location.  Tip-tilt and tracking serve to center a beam or 

a sensor’s field of view onto a desired target, but improving the overall quality of the 

beam or received image requires higher order correction of some sort.   

In Notre Dame’s in-house system, a deformable mirror from Xinetics is controlled 

by actuators on the non-reflective side.  This is a common approach that can be found in 

other applications.
17,18

  In these applications, the size of the entire aperture becomes less 

important than the distance between actuators within the aperture.  Thus, for the purposes 

of analysis, it becomes practical to divide the aperture up into a number of sub-apertures, 

with each sub-division either centered on a single actuator or encompassing the region 

between actuators.  

8.5.1. Basis-Spline Correction Fitting 

Guidelines for higher-order correction of atmospheric distortions based on the 

effects of local actuators already exist and were mentioned in section 4.3.1.  In particular 

there is the equation 
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in which r0 is the Fried parameter for atmospheric propagation defined in section 4.3.1, rs 

is the spacing between actuators in this piston-only corrective system, κ is a constant that 

depends on the type of correction being performed, and 2

rσ is the residual phase variance 

after correction.   

Equation 8.49 comes from an analysis of fitting error performed by Richard 

Hudgin
19

 in the 1970’s.  In this analysis, the correction to a wavefront is created by 

summation of a set of basis functions.  This is also known as a basis-spline or B-spline 

fit, in which the fit to a curve or data set is built up out of a set of basis functions, 

represented by Rj(x,y).  The fit to the curve encountered at a given time is produced by 

scaling each basis function by some value appropriate to that curve, Sj(t), and the fit to 

the curve will be 

 ( )∑
=

=
N

j

jj yxRtStyxFit
1

),()(),,( . (8.50) 

An example of a B-spline fit is shown in Fig. 8.23, using a set of basis functions in the 

form of overlapping triangles to produce a fit in the form of a series of connected line 

segments. 
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Figure 8.23: B-spline curve fitting:  A set Basis functions (left) are scaled 

and summed to produce a least-squares fit to a given curve or set of data 

points. (right) 

In the case of wavefront correction, this curve may be OPD(x,y,t) and if so then 

the residual disturbances in the wavefront after correction with this fit will be described 

by 
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and 
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where A is the area of the aperture.   

The basis functions, Rj(x,y), can be of any form, but some work better than others 

for specific applications.  In designing a corrective system with N actuators, it is common 

practice to have N basis functions, with each function representing the effect and 

influence that a particular actuator will have on the system.  In performing the corrective 

fit with a basis set of this form, it becomes a relatively simple matter to map the 
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corrective fit onto the control signals needed to provide that correction, as the proper 

control for the jth actuator will then be a function of the corresponding coefficient of 

fitting, Sj(t).   

An optimal fit is one with values of Sj(t) to minimize Eq. 8.52 for each value of t.  

As was done with the T/T correction, the optimal values of these coefficients will 

correspond to values for which the derivative of Eq. 8.52 with respect to that coefficient 

is zero.  
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This leads to the equation 
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Using the following notation: 
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Eq. 8.52 can be rewritten as 
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and Eq. 8.54 can be written as 
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jkjk CtSB
1

)( . (8.59) 

The indexed sets of Bk, Sj, and Cjk can also be treated as vectors and matrices, and 

the set of equations represented by Eq. 8.59 can be written as 

 )()( tSCtB
rrr

= . (8.60) 

Technically the matrix C
r

in Eq. 8.60 should be T
C
r

, the transpose of C
r

.  However, by Eq. 

8.57, Cjk = Ckj which indicates C
r

is a symmetric matrix, for which CC
T

rr
= .  Likewise, Eq. 

8.58 can be written as  
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The solution to Eq. 8.60 is quite clearly  
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Substituting this into Eq. 8.61, the minimum achievable wavefront distortion after 

correction is 
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The analysis by Hudgin
19

 continues from this point with a focus on aberrations 

produced by the atmosphere, characterized by Kolmogorov turbulence.  As turbulence of 

this type is not periodic or predictable except in the form of ensemble averages, his 

analysis deals with an ensemble average of the residual wavefront disturbances, in the 

form 
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In section 4.2.3, a structure function of the form  

 [ ]2

11221122 )),,(()),,(()),(),(( tyxAtyxAyxyxDA −=−  (8.65) 

was defined to describe the average difference in some quantity A at points separated 

by r
r

 = (x2,y2) - (x1,y1).  In the case of homogeneous and isotropic turbulence, this 

becomes a function of the separation distance, r = r
r

, as the location of the first point and 

direction to the second point become irrelevant.  In terms of a structure function for the 

OPD (DOPD), the residual differences can be written as  
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As was addressed in section 4.3.1, the structure function for wavefront variations 

produced by Kolmogorov turbulence, as seen in a receiving aperture, is of the form 
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and the mean-squared phase variation seen over an aperture of size Ap with atmosphere-

induced distortions is  
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Therefore, atmosphere-induced OPDrms over an aperture is such that 
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From this, Hudgin arrived at a prediction for residual wavefront distortions of the 

form 
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where rs represents the spacing between the actuators producing each basis function of Rj 

in the corrective system and the constant κ is determined by the basis functions being 

used in the corrective fit.  

8.5.2. Piston-Only Sub-Apertures 

A relatively simple form of higher-order correction, and a good starting point for 

exploration of this subject, is a system that only corrects for piston, but provides this 

correction on a local basis in many small regions over the aperture.  This is easily 

visualized as a set of independent flat mirrors on pistons, with each mirror being moved 

up or down to intercept the local portion of the wavefront at the appropriate point.  In 

actual implementation, this may instead take the form of an array of pixels made of liquid 

crystal or other materials in which the index of refraction can be altered by applying 

voltage or current.  This allows the relative phase of light passing through each pixel to 

be adjusted on command.
20

 

In dealing with aero-optic disturbances, time averages will serve the same 

function as ensemble averages did for atmospheric disturbances in Hudgin’s analysis.  
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In using a sinusoidal wavefront of the form 
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this time average can be found by integrating a function over the rage φ = -π to φ = π and 

then dividing by 2π. 

For correction of piston and piston alone over sub-apertures, the basis function 

may be written as  
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The parameters Xj and Yj represent the center of this basis function and 

presumably correspond to the location of an actuator driving the local piston correction in 

a physical system of this sort.  This analysis assumes that the actuators and corrective 

segments are arranged in a rectangular grid with spacing such that each actuator is a 

distance of subAp from each of its closest neighbors.   

Considering a one-dimensional aperture, if the aperture is divided into sub-

apertures of equal size, then the number of sub-apertures will be 
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The center location (Xj) of each sub-aperture will then be 
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and 
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for j = k, while Cjk = 0 for j ≠ k.  If the index j is assigned so that Rj corresponds to the jth 

sub-aperture from one end of the aperture, then  
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where I
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represents the identity matrix and 
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where I
r

represents the identity matrix.  Because of this, only cases where j = k will 

contribute to the summation in Eq. 8.63 and so 
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It has been well established in previous sections that the time-averaged 

uncorrected (OPDrms)
2
 is ½K

2
.   The average element for summation in Eq. 8.71 is then:  
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Using the value of N from Eq. 8.74 
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In previous sections, the ratio Ap/Λ was found to be equivalent to a Strouhal 

number based on the length scale of the aperture.  Likewise,  
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Using this relationship and the corrective “gain” as defined in previous sections,    
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Interestingly, this is the same result arrived at in Eq. 8.47 for one-dimensional piston 

correction, but scaled to the corrective sub-apertures rather than the full aperture. 

8.5.3. Segmented Correction  

The next stage in higher-order correction would seem to be adding T/T correction 

to the sub-apertures.  However, letting the correction in each sub-aperture remain 

independent of its neighbors fails to capture an important aspect of devices like the 

aforementioned deformable mirror.  In such devices, adjacent sub-apertures are 

frequently not independent.  Extending one actuator may not only move that portion of 

the mirror, but may produce a strain that can shift adjacent actuators.  Even if this is not 

the case, the mirror is a continuous sheet and the shape of any section will be determined 

not only by the position of the actuator associated with that portion, but by the position of 

surrounding actuators as well. 
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An approximation of this last property can be made by placing an additional 

restriction on a set of sub-apertures, requiring the linear fits over these sub-apertures to 

meet at the edges.  With this restriction in place, the envisioned corrective system 

changes from a set of independent T/T mirrors to a continuous segmented mirror in 

which each segment is connected to its neighbors by “hinges” of some sort.  Figure 8.24 

illustrates the difference.  As shown in Fig. 8.24, the additional restriction may prevent a 

perfect fit in each sub-aperture, but it does eliminate discontinuities at the boundaries 

between sub-apertures. 

 

Figure 8.24: Segmented Mirror Correction. 

A set of basis functions that produce this sort of fit were shown in Fig. 8.23 as an 

example of B-spline curve fitting.  A detailed analysis and derivation using this basis 

function, as was done for piston-only sub-apertures, can be found in section B.7.3 of 

Appendix B.  For now, it is sufficient to note that with this basis function the matrixC
r

is 

defined by values of  
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along the diagonal of the matrix and values of  
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in the positions adjacent to the diagonal.  Inversion of this matrix is not as simple as that 

of the purely diagonal matrix found for local piston correction, but it is possible.  Again, 

the full analysis may be found in section B.7.3, but the average element for summation in 

Eq. 8.71 may be found to be:  
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with Xj and Xk representing the locations of the jth or kth actuator.  From Eq. 8.71, the 

corrective gain should be 
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Finding a general solution to Eqs. 8.87 and 8.88 for any value of N from this is left for the 

future. 

8.5.4. Continuous Surfaces 

An actual continuous surface does not have “hinges” of the sort seen in the 

segmented correction of the previous section.  To achieve continuity in derivatives of the 

curve produced well as position at the borders between sub-apertures, a third-order or 
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higher fit is necessary.  Xianetics actually recommends using third-order functions to 

describe their deformable mirror for control purposes.   

A common form of B-spline basis functions are those produced by the Cox-de 

Boor recursion formula, described in detail in section B.7.3 of appendix B.  The basis 

functions used for piston-only and segmented-mirror correction in the previous sections 

were examples of the 0-order and first-order basis functions produced by the Cox-de 

Boor formula.  The third-order basis function of this form is shown in Fig. 8.25 below, 

graphed against intervals of length subAp.  It should be noted that the effects of this basis 

function extend past the locations of the adjacent actuators, to reflect a system in which 

moving one actuator puts a strain on the adjacent actuators and may cause them to shift as 

well.  

 

Figure 8.25: Third-order basis function. 
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The full analysis for this system may be found in section B.7.4 of appendix B.  

For now, it is sufficient to note that the matrix defining this system is found to be 
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and that finding a generalized solution for the effective gain of this type of correction is 

theoretically possible, but is left for the future. 

8.5.5. Higher-Order Correction by Simulation 

Gain functions of the sort shown in sections 8.4.1 through 8.4.4 can be found 

numerically by running a simulation of a sine-shaped wavefront in an aperture, 

computing the correction for multiple cases of relative length scales and relative positions 

of the aperture and wavefront disturbances, and averaging where appropriate.  The one-

dimensional gain of Fig. 8.11 was originally found in this manner, with the analytical 

derivation of Eq. 8.35 coming afterwards.   

Figure 8.26 shows the gain found in this manner for a one-dimensional aperture 

that has been divided into one to five sub-apertures, with independent piston correction 

occurring in each sub-aperture.   
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Figure 8.26: Numerically-computed piston-only corrective gain with sub-

apertures. 

The curves located further to the right on the figure are associated with more sub-

apertures.  A greater number of smaller sub-apertures within an aperture of fixed size 

allows correction to be performed on a finer scale and allows the system to deal 

effectively with disturbances of smaller scales and higher frequencies.  It should also be 

noted that the shape of the curve changes somewhat with the number of sub-apertures.  

This deviation seems to occur around a point at which the sub-aperture length scale is 

about half that of the wavefront disturbance.   

Figure 8.27 shows the gain curves of Fig. 8.26, plotted against a Strouhal number 

based on the length scale of the sub-apertures rather than that of the overall aperture.  

Curves for 10, 25, 50, and 100 sub-apertures have also been added.  The curves fall on 

top of each other, with only slight variations, and are all very similar to the one-
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dimensional gain curve for piston correction found in Eq. 8.47 and plotted in Fig. 8.21.  

This agrees with the prediction of Eq. 8.84 in section 8.5.2. 

 

Figure 8.27: Numerically-computed piston-only corrective gain scaled by 

sub-aperture dimensions. 

This can likewise be performed for correction with other forms of basis function.  

The results of using a first-order basis function, corresponding to the segmented mirror of 

section 8.5.3 are shown in Fig. 8.28.  Fig. 8.28 (a) is similar to Fig. 8.26 in showing 

results for one to five sub-apertures.  Just as was the case for the piston-only correction, 

more sub-apertures allow the system to deal with smaller length scales and higher 

frequencies of disturbance, shown by the gain curves moving to the right.  However, the 

shape of the curve seems to change significantly with different numbers of apertures.   
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Figure 8.28: Effects of segmented correction. 

Figure 8.28 (b) scales the results seen in Fig. 8.28 (a) by the dimensions of the sub-

aperture, as was done for piston-only correction in Fig. 8.27.  As was also done for 

piston-only correction, this figure includes results for 10, 25, 50, and 100 sub-apertures. 

The numerically-calculated gain curves appear to converge onto a smooth curve as the 

sub-aperture count increases.  However, unlike what was seen for local piston correction, 

the shape of the curve being converged towards is different than that of T/T correction 

over a single aperture.  This is because the correction provided in each sub-aperture of the 

segmented mirror has a constraint not seen in the single-aperture case, in that the 

endpoints of the segment in each sub-aperture must match the endpoints of the adjoining 

sub-apertures.  The converging curve appears to have a 3-dB point around StsubAp ≅ 0.5, 

compared to the previously found 3-dB point of StAp ≅ 0.83 for T/T in a single aperture.   

As was done for piston and segmented correction, results of one-dimensional 

simulations for third-order correction are shown in Fig. 8.29.  A correction by a single 

third-order fit across the aperture has a 3-dB point of StAp ≅ 1.62.  Adding more sub-
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apertures causes the system to converge on a gain curve with 3-dB point near 

StsubAp ≅ 0.5, just as was the case for the segmented correction. 

 

Figure 8.29: Effects of correction with a continuous surface. 

Figure 8.30 compares the gain curves for first order (segmented) and third-order 

(continuous surface) correction with 200 sub-apertures, a degree of resolution in 

correction that produces fairly smooth curves.  The two curves are similar, with 3-dB 

points at StsubAp ≅ 0.5, though curve for the third-order correction seems to be a bit 

steeper.  Both curves also show a slight deviation occurring at StsubAp ≅ 0.5, which appears 

to be an artifact of curve-fitting that occurs when the period of the disturbance is twice 

that of the aperture.  
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Figure 8.30: Comparing segmented and continuous surface correction for 

large numbers of sub-apertures.  

Finding a simple approximation for these corrective-gain curves is a bit more 

difficult that was the case for the analytic expressions found in section 8.4.  As with any 

discreteized simulation, there are always limits of resolution both time and space within 

the simulation.  Achieving finer resolution requires more computing time and eventually 

some practical limit is reached.  Additionally, precision and round-off error may become 

factors when the values or differences in values involved become very small.  Simply 

plotting the analytic solutions found in section 8.4 tended to encounter problems of this 

sort at values of StsubAp < 0.01 when using PC-based MatLab routines of the sort that were 

also used to perform these simulations.     

Figure 8.31 shows results for a simulation segmented correction with 1000 sub-

apertures, plotted in log-decibel form.  The results level off for values of StsubAp below 0.2 
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to a gain of about 0.002 (-27 dB), which is likely due to the aforementioned limitations of 

the simulation.  The region from StsubAp = 0.1 to StsubAp = 1.0 shown here never quite 

achieves the characteristics that would allow a power-law fit to be carried out with much 

confidence, but a function of 8(StsubAp)
4
 seems to serve as a first-order approximation over 

the range from StsubAp = 0.2 to StsubAp = 0.5.     

 

Figure 8.31: Effects of segmented correction. 

Figure 8.32 shows results for continuous-surface correction based on a third-order 

fit with 1000 sub-apertures, plotted in log-decibel form.  The results level off to a gain of 

about 10
-6

 (-60 dB) for values of StsubAp below 0.15.  Again this is more likely due to the 

limitations of the simulation than a reflection of reality.  In the region between StsubAp = 

0.15 and the 3dB point of StsubAp = 0.5, a function of 2000(StsubAp)
11.7

 seems to serve as a 

good approximation.  This is not as precise a fit as was achieved in sections 8.4.2, 8.4.3, 

and 8.4.4 with Taylor series approximations of analytic functions, but it is likely to be a 
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good enough first-order approximation to be useful in engineering and design of optical 

corrective systems.    

 

Figure 8.32: Effects of segmented correction. 

For these forms of higher-order correction, finding better approximations that can 

be useful in engineering may be possible with greater computer power, or it may be 

possible to find a generalized analytic solution based on the spline curve-fitting.  

However, limitations of time and resources place these are beyond the scope of this 

study.  For now, the 50% cutoff point of StsubAp = 0.5 will suffice as a guideline for 

minimum spatial resolution required in a corrective system. 

8.6. Temporal Effects 

Section 3.5 in chapter 3 addressed common limitations of corrective systems.  The 

first such limitation was that of spatial resolution, which was addressed the previous 

section of this chapter as is the result of having a finite number of sub-apertures with non-
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zero width and spacing in the corrective system.  Another type of limitation is that of 

temporal effects, often caused by a physical system having limitations in how quickly it 

can respond to changes in conditions.  This often manifests as the system having some 

upper bandwidth, being unable to cope with conditions and inputs of a frequency beyond 

that.   

In expressing the corrective system gains developed in this chapter in terms of 

Strouhal numbers, it would seem that these results include temporal effects, as a Strouhal 

number contains a frequency along with a velocity and length scale.  However, this is 

merely an artifact of the relationship between the length scales in the flow and the 

velocity with which they pass through the optical aperture.  The analytical and numerical 

approaches used in arriving at these system gains assumed that the corrective system was 

able to instantly react to any changes in the wavefront and achieve the best possible 

correction it could provide for the system without delay. 

8.6.1. Periodic Correction 

Periodic correction is common in discrete-time systems, in which the correction to 

be applied is updated at intervals.  Section 3.5.2 described the problems and limitations of 

this, which may occur as the wavefront to be corrected changes during the interval 

between corrections, while the correction applied remains fixed. 

To explore this aspect of corrective systems, the assumption of a sinusoidal 

wavefront will again be used in the form of 
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where Λ is a length scale associated with the distortions in the wavefront and φ indicates 

relative position of the distortion, which is assumed to be changing with time.  In 

previous sections of this chapter it was found that average OPDrms of this wavefront over 

long periods of time and a one-dimensional aperture of length Ap would be  

 22

2

1
KOPDrms = . (8.91) 

If correction were applied at the point in time corresponding to φ0, in the form of a 

perfect fit to the wavefront at that moment, then the corrected wavefront will have the 

form 
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Averaging over the aperture, the period of correction, and all possible starting-points for 

that correction period leads to: 
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Intermediate steps of this derivation and integration can be found in section B.6.1 

of appendix B.  As was done when dealing with spatial resolution, the residual distortions 

after correction can then be compared to the distortions before correction by taking the 

ratio of these two results to produce an effective gain function for the corrective system.  

Derivation of an analytic expression for periodic correction over a two-dimensional 

circular aperture can also be found in appendix B, but the result of this is the same as for 

a one-dimensional aperture, given in Eq. 8.94: 
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In actually implementing this system, it may be more understandable to express 

things in terms of the number of corrections per cycle of the disturbances in the 

wavefront (NC) or the ratio of the frequency of corrections (fC) to the frequency 

associated with the wavefront distortions (fD).  Then again, one may begin with only the 

length of the correction period (τ1). The relationships between these terms and the 

characteristics of the flow (UC and Λ) are 
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Figure 8.33 plots Eq. 8.94 in terms of the number of corrections per cycle.  From 

this figure, it seems that performing only one or two corrections per cycle does not reduce 

the averaged OPDrms because performing a perfect correction may reduce the OPD to 

zero at some points in time, but doing so with a frequency this low also allows the 

distortions in the wavefront to reach a point at which the correction and the distortion are 

180
o
 out of phase with each other, doubling the distortion at those times.  As the gain 

functions are expressed in terms of the square of OPDrms to better relate to power spectra, 

this doubling becomes a quadrupling of the effect, and more than counterbalances the 

perfect correction performed at the beginning of the cycle.   
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Figure 8.33: Reduction in wavefront distortions for different frequencies 

of periodic correction. 

From Eq. 8.94 and Fig. 8.33 a minimum of 3.3 corrections per cycle is necessary 

simply to avoid making the average distortion worse, and the 3-dB (50%) point is found 

at 4.9 corrections per cycle.  For small values of ∆φ and corresponding large values of 

NC, it may be more convenient to use the approximation sin(x) ≅ x - x
3
/6 to arrive at the 

following expression:  
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8.6.2. Latency 

As addressed in section 3.5.3, latency refers to a delay in applying the correction.  

This may be caused by the time needed to calculate the appropriate conjugate of the 

wavefront to be corrected, the time required for actuators to traverse to the required 
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position, or transient effects and delays in control signals reaching the required points and 

values.   

Again making use of the sinusoidal wavefront approximation, if the wavefront is 

of the form 

 







+

Λ
= ϕ

π
xKxOPD

2
sin)( , (8.97) 

then the corrected wavefront would be of the form  
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with ∆θ indicating the delay of the correction in terms of phase relative to the moving 

distortions in the wavefront.  Averaging over the aperture and all points during a cycle of 

the disturbance leads to: 

( )

( )2

2

)(

rms

rmscor

OPD

OPD
G =∆θ  

∫ ∫
− −

















∆−+

Λ
−







+

Λ
=

π

π

ϕθϕ
π

ϕ
π

π

2/

2/

2

2

2
sin

2
sin

1

2

12
Ap

App

dxdxKxK
AK

 

 ))cos(1(2 θ∆−= . (8.99) 

Details and intermediate steps in this derivation are provided in section B.6.2 of 

appendix B.  As with periodic correction, the results for a circular aperture are the same 

as for the one-dimensional aperture. 

As with periodic correction in the previous section, it is more common to begin 

with knowledge of the flow and some fixed time delay (τ2) associated with the system 

that to know the relative phase.  In terms of these factors, 



 

286 

 
Λ

==∆ 2
2 22

τ
πτπθ C

D

U
f . (8.100) 

Eq. 8.99, plotted in Fig. 8.34, is periodic, as it is based on an assumption of a 

periodic disturbance.  In the case of a periodic or even quasi-periodic disturbance, if a 

delayed correction is delayed by enough, then it may regain some of its effectiveness by 

matching and correcting the following cycle of the disturbance.  From Eq. 8.99 and Fig. 

8.34, it seems that performing corrections with a latency phase lag of more than 1.05 

radians will add to the OPDrms observed, rather than decrease it.  This corresponds to a 

time lag of about 17% of the time associated with one cycle of the disturbance.  However, 

if the disturbances are truly periodic, then a phase delay of more than 5.23 radians may 

do some good by catching the next cycle as it comes around.   

 

Figure 8.34: Reduction in wavefront distortions for different degrees of 

latency in the correction. 

If one does not wish to rely on the periodicity of the disturbances, then a phase 

delay of no more than 0.73 radians is recommended, as this represents a 3-dB cutoff for 
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the system.  For latency delays that are relatively small compared to the time scales 

associated with the wavefront disturbances, it may be more convenient to use the 

approximation cos(x) ≅ 1 - x
2
/2 to arrive at the following expression:  

 22
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8.6.3. Periodic Correction with Latency 

Most physical systems with periodic correction will also have latency.  Again 

assuming a sinusoidal wavefront, the corrected wavefront would be of the form 
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with φ0 corresponding to time for which the periodic correction is meant and ∆θ 

corresponding to the delay in applying that correction.  Averaging over the aperture, the 

period of correction, and all possible starting-points for that correction in the manner of 

Eq. 8.93 involves some mid-stages with excessive numbers of terms, which are shown in 

section B.6.3 of appendix B.  Only the initial integral equation and the end result will be 

shown here: 

( )2

rmscor OPD  

∫ ∫ ∫
−

∆+

−

















∆−+

Λ
−







+

Λ∆
=

π

π

ϕϕ

ϕ

ϕϕθϕ
π

ϕ
π

ϕπ

0

0

2/

2/

0

2

0

2
sin

2
sin

11

2

1
Ap

App

ddxdxKxK
A

 

 [ ])sin()cos()cos()sin()sin(
2

ϕθϕθθϕ
ϕ

∆∆−∆∆−∆+∆
∆

=
K

. (8.103) 

The gain associated with this form of correction would then be 
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To check this against the results in sections 8.6.1 and 8.6.2, if ∆θ is small and 

significantly smaller than ∆φ, then using approximations of sin(x) ≅ x and cos(x) ≅ 1:  
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which is the result found in Eq. 8.94 for periodic correction without significant latency.  

Likewise, for ∆φ that is small and significantly smaller than ∆θ: 
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which is the result found in Eq. 8.99 for continuous correction with latency.   

Using these approximations for both ∆φ and ∆θ approaching zero leads to a gain 

of G(∆φ,∆θ)=0.  Using the additional terms for an approximation of sine and cosine that 

were used in sections 8.6.1 and 8.6.2: 
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Dropping the 4
th

-order terms from this leads to the expression 
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When actually implementing a system, the data available on the characteristics of 

the disturbances and system are unlikely to be provided in terms of relative phase, as that 
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can only be determined by examining the disturbances and system together and in 

relation to each other.  In practice, it is more likely that one will be confronted with a 

disturbance that may be characterized by a period of τC or frequency of fC, such that τC 

=1/ fC.  To deal with this disturbance, it is then necessary to select or construct a system 

that will have a given update period (τ1) or frequency (f1) and latency delay (τ2).  The 

terms of relative phase in Eqs. 8.104 and 8.108 can then be expressed as 

 
1

1 22
f

fC

C

π
τ

τ
πϕ ==∆  (8.109) 

and 

 
Cτ

τ
πθ 22=∆ . (8.110) 

Using these substitutions, Eq. 8.104 may be written as  
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and Eq. 8.108 as 
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8.7. Using the Filter Functions 

The preceding sections in this chapter have presented many equations 

representing various filter functions as representations of corrective systems.  Here is an 
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illustrative example showing how these y might be applied in predicting the performance 

of a given adaptive-optic system. 

Consider a flow with a characteristic velocity of 80 m/s in which the primary 

wavefront aberrations have a characteristic frequency of 200 Hz.  Correction is to be 

applied over a circular aperture with a diameter of 25 cm.  The first stage in this 

correction is a T/T mirror applying correction based on the Zernike-tilt definition of tilt.  

The mirror is controlled by an analog system that tends to have a time delay of 0.25 ms in 

reaching a position towards which it is corrected.  The Strouhal number associated with 

the disturbance and the aperture is then 

 625.0
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St Ap . (8.113) 

Looking at Fig. 8.13, this is below the 3-dB point associated with correction of this sort; 

however, Fig. 8.14 indicates this is not quite in the range where the approximation of 

G=1.52(StAp)
4
 would apply.  Using the full form of Eq. 8.39 
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This indicates that this form of correction cannot reduce the mean-squared OPD or phase 

variance of this disturbance below 16% of its uncorrected value, due to the inability of a 

flat T/T mirror to fully match the shape of the wavefront distortions.   

For a disturbance of this frequency, the latency in the control system for the 

mirror represents a phase delay of   
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 radianss
s

31.0
1000

25.01
2002 =⋅⋅=∆ πθ . (8.115) 

By 8.99 there should be an error associated with this, represented by a gain due to 

temporal effects (Gt), such that 

 095.0))31.0cos(1(2 =−=tG . (8.116) 

Indicating that the mean-squared inaccuracies due to latency in the applied correction are 

equivalent to 9.5% of the mean-squared uncorrected disturbance. 

As was addressed in section 3.5.4, fitting error and temporal-based error are 

normally considered to be uncorrelated, which means the net residual phase variance 

after correction (σr
2
) can be found by simply adding the mean-squared error from each 

source.  The error in the analysis above has been expressed as something proportional to 

the uncorrected error (σ
2
), so this may be expressed as 

 222

)(

2

)(

2 26.0)095.016.0( σσσσσ =+=+= temprfitrr , (8.117) 

which indicates this system will reduce the wavefront distortion by approximately a 

factor of four.  Reducing the response time of the system could improve this 

performance, but a level of 16% residual error remains the absolute limit of T/T 

correction under these conditions. 

It should be kept in mind that the uncorrected error in this analysis includes 

piston.  If piston within an aperture is not normally considered for a given application, 

which is normally the case when the resolved image or far-field pattern is of primary 

importance, then a more meaningful comparison might be with that of the piston-

corrected case.  According to Eq. 8.48, the expected error after piston correction ( 2

pcσ ) in 

these circumstances would be 65% of the original error.  So the phase variance after T/T 
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correction compared to the wavefront disturbances pertinent to this application before 

correction would be  

 4.0
65.0

26.0
2

2

2
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σ

σ
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r . (8.118) 

Therefore, the T/T correction of this system would produce a reduction in phase variance 

of about 60% for applications in which net piston across the aperture is not a factor. 

8.8. Conclusions 

The gain functions developed over the course of this chapter serve as indicators of 

the effectiveness in applying various types of correction to distorted wavefronts in an 

aperture, provided those distortions are sinusoidal in nature.  However, many forms of 

analysis express waveforms as sums of sinusoidal functions.  A scaling law found by 

means of a sinusoidal simulation worked when applied to the non-sinusoidal distortions 

in the experimental work involving a shear layer.  As will be shown in the following 

chapter, these gain functions can be applied with fruitful results to conditions and 

distortions that can not be approximated with a single sinusoid.   
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CHAPTER 9:  

APERTURE FILTERS IN APPLICATION 

9.1. Overview 

The derivations in the previous chapter were performed by approximating the 

wavefronts to be corrected as sine waves.  This, in turn, was based on the expected form 

of distortions produced by a shear layer.  However, this is an extreme simplification.  

Then again, Fourier series, power spectra, and some other forms of analysis are based on 

the idea that any waveform can be expressed as a summation of sine functions.  

Additionally, the scaling law found in section 8.3.2 by use of this approximation did 

seem to work with the actual data taken from a shear layer, despite the inaccuracies and 

limitations of this approximation and the presence of a boundary layer as well.   

This chapter provides a set of examples in which the corrective-system gain 

functions found in chapter 8 are applied and compared to experimental data and results.  

In these examples, the validity of approximating the distortions with a single sinusoid is 

questionable, or clearly not applicable, yet the gain functions produced with this simple 

approximation prove to be accurate descriptors of the effects of correction when applied 

to these cases. 
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9.2. T/T Correction in a Compressible Shear Layer 

The gain function for one-dimensional Z-tilt correction of Eq. 8.35 is intended to 

be compared to a power spectral density.  Producing a power spectrum requires a 

continuous signal or, in the case of discreet data points, a continuous sequence.  

Producing a spectrum with a significant degree of frequency resolution requires this to be 

a relatively long sequence.  A power spectrum for the uncorrected case can be produced 

by reconstructing a long, continuous wavefront, extrapolated upstream and down from 

the data recorded.  These long, continuous wavefronts may be thought of as being viewed 

through an infinitely large aperture.   

However, this is not possible for the T/T corrected wavefronts as the correction 

applied will change with each time step, and will change the wavefront accordingly.  

Thus the corrected wavefront within the aperture at each time step must be considered as 

a separate case, and can not be simply joined to the ends of wavefronts from previous or 

following points in time.  Because of this, a power spectrum of the corrected wavefront 

would be limited to what could be produced using only the data points within the aperture 

at a given time.   

Averaging several such spectra from different time steps may be useful in some 

cases, and tends to produce smoother spectra, but this does nothing to improve the 

frequency resolution.  One way to achieve higher frequency resolution is to pack a 

greater number of sensors into the area of measurement.  A major benefit of the Malley 

probe is that it achieves spatial resolution via temporal resolution, substituting a higher 

sampling rate for more sensors.  However, with either approach, the cost or effort of 

achieving the required number of data points within a finite aperture for a desired 
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resolution may be prohibitive.  This degree of resolution was not available at the time of 

the experiments described in chapter 7.   

On the other hand, it is possible to record the tilt removed at each time step, as 

represented by the coefficient B in Eq. 8.15.  A power spectrum can then be generated 

from this long continuous sequence of tilts.  As the gain, G, in Eq. 8.35 indicates the 

degree of aberration remaining after T/T correction, so the function 1 – G should 

correspond to the power spectrum of the aberrations being removed.  Figure 9.1 (a) 

shows a power spectrum for beam jitter data taken at a position of 13.4 cm in a shear 

layer comprised of Mach 0.77 and 0.06 flows.  Frequencies below 500 Hz have been 

filtered out to remove vibrations in the experimental equipment.  It also shows the power 

spectrum for tilt removed in applying T/T correction over an aperture of 5 cm, and the 

function 1 – G scaled in the horizontal axes by the aperture size and the convection 

velocity of 148 m/s to recover frequencies from the Strouhal number defined in Eq. 8.34.  

Vertical scales have been normalized by the peak value of the jitter spectrum.    

 

Figure 9.1: Comparing power spectra for beam jitter, tilt removed, and 

predicted filter function. 
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For a more direct comparison, Fig. 9.1 (b) shows just the tilt removed spectrum and 1 – 

G, with the tilt spectrum scaled by its maximum.  The degree to which the prediction of 1 

– G corresponds with this spectrum can be clearly seen, including the small local 

maximum seen between 5 and 6 kHz.   

Figure 9.2 (a) shows T/T spectra generated from the same data set used in Fig. 9.1 

for three different sizes of aperture.  The smaller apertures have more energy associated 

with them as some elements of the wavefront that could only be corrected with higher-

order measures for a 20-cm aperture become T/T effects for apertures of 15 or 10 cm. 

 

Figure 9.2: (a) Tilt spectra for different aperture sizes. (b) Scaling tilt 

spectra by Strouhal number.  

Figure 9.2 (b) shows the same spectra as 9.2 (a), but plotted against a Strouhal number 

based on the aperture size (StAp = Ap·f / UC) rather than raw frequency.  Also plotted on 

this figure is the 1 – G function for a one-dimensional aperture.  One way to interpret this 

figure is that as Ap decreases, the spectrum being filtered slides to the left and more of the 

spectrum enters the region for which T/T correction is effective.  As with Fig. 9.1 (b), the 
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way in which the shape of the filter spectrum predicting which frequencies will be 

removed matches the spectrum for T/T being removed is quite clear. 

9.3. Periodic Correction of a Heated Jet 

The effects of temporal limitations in applying optical correction were first 

addressed in section 3.5.  To summarize here, any physical system will have some delays 

in applying a correction.  If the disturbances are changing or moving with time, then a 

correction that is generated for the disturbances seen at time t but is not actually applied 

until time t + ∆t will become less effective with increasing ∆t.  In a similar issue, 

corrective systems designed with current technology tend to rely on computers and 

microprocessors in processing measurements of the distortions and generating the 

corrections to deal with them.  Such systems are discrete in time, meaning the corrections 

produced by these systems are applied at updated at specific moments in time, while the 

aberrations to be corrected change continuously.  If the period between corrections is 

long enough for the aberrations to change significantly before the next correction is 

applied, then the corrective system becomes less effective. 

In section 8.6, the effects of these temporal limitations were analyzed, using a 

simplified sinusoidal disturbance.  In the course of this analysis, it was found that for a 

disturbance with a period of τC, a corrective system that updates with a period of τ1, and a 

delay in applying the correction of τ2, the corrective “gain” of the system will be 
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In 1996, Cicchiello
1
 performed a study of the effects of latency and periodic 

correction in one-dimensional optical distortions produced by a heated jet.  This flow has 

tendencies towards periodic disturbances and dominating structure sizes similar to those 

seen in a shear layer, although the mechanism behind the optical distortions produced is 

the temperature difference between the heated air of the jet and the cooler surrounding 

air.  His results indicated that not only was the Strehl ratio achieved by such correction a 

function of both τ1 and τ2, but the effects of these factors appeared to be decoupled.  That 

is to say, there appeared to exist two independent functions, h(t) and g(t), such that the 

Strehl ratio (SR) achieved after correction could be described by   

 )()(),( 2121 ττττ ghSR = . (9.2) 

This was based on providing post-processed correction to the wavefronts 

reconstructed from these measurements with varying correction periods and latency 

delays, and then constructing the far-field intensity pattern associated with the corrected 

wavefronts.  Figure 9.3 shows curves of Cicchiello’s Strehl ratio results associated with 

particular values of τ1 which have been normalized by their value when τ2 was equal to 

zero.    
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Figure 9.3: Time-averaged Strehl ratio as a function of time delay between 

constructing a perfect correction and applying it (τ2), normalized by the 

time-averaged Strehl ratio for τ2 = 0.0 for three values of the period 

between applying corrections (τ1). (Cicchiello, 1997)
1
 

If Eq. 9.2 is correct, then both h(t) and g(t) should equal one when t = 0.  

Therefore, the Strehl ratio at τ2 = 0 should be equal to h(τ1) alone.  Normalizing all other 

Strehl ratio results associated with that value of τ1 by this the Strehl ratio at τ2 = 0 should 

produce Strehl ratio values that are functions of τ2 alone:  

 )()0()()0,( 1121 ττττ hghSR === , (9.3) 
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The manner in which the plotted curves of Fig. 9.3 lie close to each other would seem to 

support this, especially as the results for the most frequent correction rate (τ1 = 1.0 ms) 

and the least frequent correction rate (τ1 = 1.4 ms) lie practically on top of each other. 

The corrective gain found in section 8.6.3 and shown in Eq. 9.1 expresses the 

ratio of the corrected mean-squared OPD or phase variance to the uncorrected case.  

Cicchiello’s results are in terms of Strehl ratio after correction.  By the large-aperture 

approximation,  
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Strehl ratios can be related to values of OPDrms, and also to phase variance, σ, which is 

equal to OPDrms scaled by 2π/λ.  Given an average value of (OPDrms)
2
 or σ

2
 without 

correction, the value after correction can be found by multiplying the uncorrected value 

by the gain function for that form of correction.  Therefore, for a disturbance of some 

period, τC, and of amplitude to produce an average uncorrected phase variance of σ0, a 

plausible prediction for the average Strehl ratio after correction would be 
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According to Cicchiello’s assertion that the effects of τ1 and τ2 are decoupled in 

the form of Eq. 9.2, it should be possible to separate Eq. 9.1 into independent functions of 

τ1 and τ2 so that 
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However, Eq. 9.1 does not appear to be separable in this manner.  In section 8.6.3, 

Taylor-series approximations of the trigonometric functions in Eq. 9.1 were used to find 

an approximation of 
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However, the term of τ1τ2 in the midst of this still prevents the separation into G1(τ1,τC) 

and G2(τ2,τC) such that G = G1 + G2.   

Looking at Cicchiello’s results in Fig. 9.3, the smallest value for the correction 

period used in generating these results is τ1 = 1.0 ms, while the largest value of correction 

delay appearing on this figure is half of that.  If more terms from the Taylor series are 

used in approximating the terms associated with τ1 than those associated with τ2, then Eq. 

9.1 may be approximated by: 
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This also is not separable in the indicated manner.  There does not seem to be any 

selection of the number of terms to be used in this sort of approximation that will produce 

an equation that can be separated in the manner indicated by Cicchiello’s conclusion.  

Going back to the paper
1
 in which Cicchiello’s results were presented, the 

uncorrected average Strehl ratio associated with his reconstructed wavefronts was 0.265.  

Using the large-aperture approximation, this indicates an average uncorrected phase 

variance of σ0 ≅ 1.15 radians.  From time series representations of reconstructed 

wavefronts associated with this heated jet, such as the one shown in Fig. 9.4, the larger 

disturbances seem to have a period of τC ≅ 0.005 seconds.  From this, the values of τ1 used 
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by Cicchiello correspond to a range of approximately 3.6 to 5 corrections per cycle and 

the values of τ2 used correspond to a delay of 0% to 10% of the cycle of the disturbance. 

 

Figure 9.4: Time series of experimental wave fronts for propagation 

through a heated jet. (Cicchiello, 1997)
1
(Hugo, 1996)

2
 

Using these values of σ0 and τC in Eqs. 9.1 and 9.6 over the same range of values 

of τ1 and τ2 used by Cicchiello produces the set of predictions for Strehl ratio shown in 

Fig. 9.5.   
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Figure 9.5: Strehl ratio predictions by corrective gain function and large-

aperture approximation.  

Normalizing these curves by their respective values at τ2 = 0 produces the set of 

curves shown in Fig. 9.6, which are presented next to Cicchiello’s work for comparison. 

These simulated and approximated results do match Cicchiello’s experimental results 

quite well.  The approximation deviates from the experimental results with greater 

latency, tending to over-estimate the drop in Strehl ratio.  This may be a result of the 

large-aperture approximation being originally intended for relatively small amplitudes of 

disturbance and becoming less accurate for larger disturbances,
3
 having an error of 10% 

for Strehl ratios around 0.3.  Additionally, while the main structure of the disturbances is 

of a given size and frequency, there are other components of the distortions that are of 
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differing sizes, and for which given time periods of τ1 and τ2 will correspond to different 

phase periods of ∆φ and ∆θ than for the main distortion component.  Between these 

effects and the rough estimates made in producing these curves, it is remarkable how well 

the approximation agrees with the experimental results. 

 

Figure 9.6: Normalized Strehl ratio predictions (left) compared to 

experimental results
1
 (right). 

In light of this, it may be concluded that the gain function found in section 8.6.3 for 

periodic correction with latency predicts the effects of such correction with sufficient 

accuracy that it may serve as a guideline in designing or selecting such systems for use in 

a given application.  On the other hand, even as these numerical estimates agree with 

Cicchiello’s experimental results, aspects of the mathematical analysis producing those 

estimates seem to be at odds with the conclusion Cicchiello drew from his experimental 

data.  A verification or refutation of Cicchiello’s conclusion is not the point of this study, 
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and his conclusion was a reasonable one based on the results observed in his experiment 

and analysis, but it may be that using a wider range of values for τ1 or τ2 would have led 

him to a different conclusion.  

9.4. Tracking Systems 

The approximation of a wavefront as a sine wave was intended to capture the 

dominant qualities of a shear layer and is not one that could be applied to all forms of 

aberrating flow.  However, the filter functions found by this approximation seem to work 

well in describing the effects and effectiveness of T/T correction on experimental data 

from shear layers that display optical activity at multiple length scales and associated 

frequencies.  It is worth exploring whether this applies to other forms of optical 

distortion, such as that from atmospheric propagation and Kolmogorov turbulence 

described in section chapter 4.   

As it so happens, this investigation has already been performed, after a fashion, as 

a byproduct of experiments by other researchers.  Boeing performed a series of tests at 

the Advanced Concepts Laboratory (ACL) of MIT/Lincoln Laboratory in Lexington, 

MA, intended to evaluate the effectiveness of various tracking algorithms.
4
  A simplified 

schematic of the set up for these tests is shown in Fig. 9.7. 
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Figure 9.7: Scoring and Tracking cameras for Boeing test at ACL.
4
 

On the left in this figure are sensors and processors receiving an image of a target or 

point source, seen through a series of phase screens which could be put in motion relative 

to the sensors and target.  It should be noted that these screens were constructed with a 

distribution of phase distortions intended to replicate the statistical properties of 

atmospheric turbulence, as described in sections 4.2.2 and 4.3.  Also on the left is a 

scoring laser that was projected through the screens along the same path as the image 

being received by the tracking sensor, but in the opposite direction.  This scoring laser 

was then received by a scoring sensor and processor shown on the right in Fig. 9.7. 

As the outgoing scoring laser followed the same path as the light of the incoming 

target image, the angle of deflection needed for a system to track the target should have 

been the same as the angle of deflection of the scoring beam.  Performance of the 

tracking algorithms under consideration was evaluated by comparing the output of the 

tracking control system with the measured deflection of the scoring beam.  The Boeing 

staff performing called this the coherence function, which was defined as 

 
)()(

)(
)(

2

2

fGfG

fG
f

scxxtrxx

scxtrx

scxtrx

−−

−−

−− =γ . (9.10) 



 

308 

Where Gx-tr  x-sc(f) represents the cross spectral density between the measured 

scoring beam deflection and the tracking control signal in the x direction.  Gxx-tr and Gxx-sc 

represent the autospectral densities of the two outputs.  A value of γ
2
 = 1 indicates that 

the tracking signal perfectly follows the disturbances of a given frequency, while lower 

values indicate lesser degrees of effectiveness.   

Figure 9.8 shows Boeing’s results from two of these tests, performed with 

different relative velocities for the phase screens.  They found that these tracking 

algorithms worked for low frequencies, but not for high frequencies, and the point of 

transition between these two frequency ranges was dubbed the “optical frequency.”  

Furthermore, they found that this frequency corresponded roughly to the velocity at 

which the phase screens moved, divided by the diameter of the receiving aperture, 

expressed as v/D in their terminology shown in the figure, or UC/Ap in the notation used 

elsewhere in this dissertation.   

 

Figure 9.8: Results of Boeing tests at ACL.
4
 

Tracking a target in this manner is effectively tilt correction by another name.  

The coherence function, γ
2
, corresponds to the function 1 – G from section 9.2, with high 
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values indicating that the tilt-based distortions or deviations are successfully countered by 

the system and low values indicating that they are not.  Figure 9.9 shows the results from 

Fig. 9.8, with the frequencies scaled by UC/Ap to plot those results in terms of StAp.  It also 

shows the function 1 – G for a two-dimensional aperture.   

 

Figure 9.9: Scaled Boeing results compared with circular-aperture filter 

function for Z-tilt correction. 

The 1 – G curve and the scaled experimental results agree fairly well.  It should be noted 

that the optical frequency, v/D, defined by Boeing is a rough estimate.  In section 8.4.2, 

the 50% cut-off for the two-dimensional aperture was found to be 0.93 of this value. 



 

310 

9.5. Application to Atmospheric Turbulence 

The utility of these filter gain functions for different types of correction is that 

they can be applied to practically any spectrum produced by any set of physical 

conditions, whereas the commonly established rules for adaptive optics are based on 

specific physical and spectral characteristics of Kolmogorov turbulence in the free 

atmosphere.  However, as generic rules, these gain functions should also apply to the 

atmospheric case as well. 

9.5.1. Piston and T/T Correction 

In their paper on the spectral requirements of corrective systems,
5
 Greenwood and 

Fried also considered the case of correcting piston and T/T over the entire aperture before 

providing localized correction in sub-sections of the aperture.  In doing so they found that 

the average residual error, in the form of rms phase variance over the aperture after 

correction, (σφ) would be 

 3/5

0

2 )/(075.1 rD=ϕσ  (9.11) 

when correcting for piston alone over an aperture of diameter D and would be 

 3/5

0

2 )/(141.0 rD=ϕσ  (9.12) 

after correction of both piston and T/T.  These equations are based specifically on the 

optical effects of Kolmogorov turbulence, which can characterized by the Fried 

parameter (r0) described in section 4.3.1 and appearing in the two equations above. 

The spectrum of optical aberrations used by Greenwood
6
 in characterizing the 

frequency that came to bear his name is 
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Again, this is based on a parameter (Cn
2
) which is used to characterize Kolmogorov 

turbulence, as well as the convective velocity (V) perpendicular to the optical path.  As 

addressed in earlier chapters, the phase variance after correction should be equal to the 

product of the uncorrected spectrum and the effective filter gain of the correction, 

integrated over all frequencies. 
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2 )()( dffPSDfGϕσ  (9.14) 

It should be noted that the spectrum of Eq. 9.13 is defined in such a way that the 

influence of each negative frequency is combined with its positive counterpart, so that the 

necessary integral runs from zero to infinity rather than from negative infinity to positive 

infinity.   

An effective gain for piston-only correction over a circular aperture was found in 

section 8.4.4, in the form 
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The Strouhal number (StAp) is itself a ratio of the frequency, convective velocity, and 

diameter of the aperture.  Integrating the product of Eqs. 9.13 and 9.15 over all 

frequencies and assuming Cn
2
 and convective velocity are constants over the optical path 

indicates that  
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The Fried parameter is also defined in terms of an integral of Cn
2
 over the optical path.  

Again assuming constant Cn
2
, this would be,  
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Based on this, Eq. 9.16 can be written in the form 
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This result has the form of the expression produced by Fried and Greenwood, but the 

coefficient of proportionality is quite different than that seen in their result of Eq. 9.11.  

Upon further consideration, the gain functions developed in chapter 8 were all 

based on a disturbance in one dimension, wavefronts in the form of a sinusoid in x but 

with no variations in y, reflecting the expected characteristics of aero-optic distortions 

produced by a series of coherent structures in the flow.  The analysis by Fried and 

Greenwood was for atmospheric distortions that produced variations in the received 

wavefront along every axis of orientation within the aperture.  A first-order 

approximation of this might be to consider a wavefront of two overlapping effects, one in 

x and one in y.  Again considering these distortions as sinusoids or summations of 

sinusoids, the variations seen in each axis would be uncorrelated components of the 

overall phase variance.  The effects in x and y would have the same spectral 

characteristics, but would be “filtered” independently and their effect could be combined 

in the form 
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As a first-order, back-of-the-envelope approach, this approximation fails to fully 

capture the isotropic characteristic of atmospheric distortion.  The length scales 

associated with such distortions should be the same in all orientations, whereas the two-

sinusoid approximation above would have somewhat longer length scales on the 

diagonals than along the x and y vectors.  However, Eq. 9.19, the result of this 

approximation, in is within 3% of Fried and Greenwood’s result shown in Eq. 9.11. 

The same principles and approximations can be used with the T/T gain function 

developed in section 8.4.2 to find a prediction of phase variance after this form of 

correction, 
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which deviates from the results arrived at by Fried and Greenwood by about 2%. 

9.5.2. Latency 

In a later paper,
7
 Fried returned to the subject of optical correction, this time 

focusing on the effect of a time delay in applying the correction.  He arrived at a 

prediction of  

 ( ) 3/52 44.28 tfG ∆=ϕσ  (9.21) 

for a time delay of ∆t.  The Greenwood frequency (fG) is yet another parameter for 

characterizing atmospheric turbulence, which was addressed in section 4.3.2 and is 

defined as 
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The gain function for latency in correction, developed in section 8.6.2, can be applied to 

the spectrum of Eq. 9.13 as was done for piston and T/T correction in the previous 

section.  In this case, it is not necessary to consider and combine effects along two axes 

as was done in the previous section.  Temporal effects occur primarily along the vector of 

the overall convective velocity.  Performing this calculation and using the definition of 

the Greenwood frequency above predicts a residual phase variance of  

 ( ) 3/52 56.28 tfG ∆=ϕσ  (9.23) 

for atmospheric correction with a time delay which is within 0.5% of Fried’s result. 

9.6. Conclusions 

The gain functions of chapter 8 were found by approximating optical disturbances 

as a sinusoidal function.  In the real world, it is rare to encounter disturbances that can 

accurately be represented in this manner.  However, if this approximation does serve in a 

crude fashion, then these gain functions may serve as a sufficient rule-of-thumb guideline 

in design of corrective systems.   

Beyond that, if the distortions or their effects can be broken up into components 

of varying frequency or associated length scale, as with a power spectrum or covariance 

function, then these gain functions may be quite useful in gauging the effect on differing 

components of the disturbances and total performance of a corrective system, even if sum 

of those components is decidedly non-sinusoidal.  Application of the gain functions to 

experimental data and theoretical predictions in various cases, including atmospheric 

turbulence, bear this out. 
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CHAPTER 10:  

CONCLUSIONS AND RECOMMENDATIONS 

10.1. Context and Foundations 

The work presented in this dissertation, and the contributions of this work, are 

born from a return to fundamental principles and a revelation of the limits of 

conventional wisdom.  The conventional wisdom and standard terminology used to 

describe and characterize fluid-optic interactions until now have been based upon various 

simplifying assumptions regarding the flow and the mechanisms by which the flow 

produces optical distortions.  These assumptions have proven to be fairly accurate in 

describing incompressible flows, such as the free atmosphere.  Over decades, these 

characterizing descriptions and parameters have become so widely used in fields 

involving fluid-optic interactions that the underlying assumptions have largely passed out 

of mind. 

The need to reconsider the fundamentals in fluid-optic interactions was revealed 

in Hugo’s work at AEDC,
1
 described in chapter 5.  This was built upon by Fitzgerald

2
 

and Cicchiello
3
 in developing and refining the Weakly-Compressible Model (WCM).  

This model, described in chapter 6, has proven to be far more accurate than the 

previously accepted models in predicting the degree and magnitude of optical distortion 

produced by a compressible shear layer.   
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10.2. Development and Understanding 

My work as a graduate student at Notre Dame began with assisting Chouinard
4
 in 

the experimental work described in section 7.3.  These experiments confirmed the 

existence of organized structures and associated pressure fluctuations predicted by the 

WCM.  After Chouinard’s departure, I continued onward with measurements of the 

optical effects of these structures.  In performing these measurements and looking at the 

associated power-density spectra, I did find confirmation that the optical effects of the 

flow were dominated by the coherent structures predicted by the WCM, and that the 

average size and frequency of those structures was determined by the growth of the shear 

layer.     

The existence and near-periodic nature of these structures in the flow led to the 

use of a sine wave as a simplified simulation of the beam deflection or wavefront 

aberrations.  Originally, this was not the focus of my research, but merely an attempt to 

increase my understanding of the process of OPD reconstruction and post-processing of 

the data, which included tip-tilt (T/T) removal.  In performing this simplified simulation, 

I found explanations for some of the traits seen in the mean OPDrms of the reconstructed 

wavefronts, particularly the effect of aperture size relative to the simulated structure size.  

Continuing forward with this work led to the set of filter functions describing various 

types of optical correction, which are presented in section 8.4 and derived in detail in 

appendix B. 

Reviewing the literature and exploring the existing body of knowledge on 

wavefront correction, or more generally what is termed beam control, revealed to me that 

these insights and formulas had applications beyond descriptions and corrective systems 
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to deal with shear layers.  As was presented in chapter 4, the most commonly used 

parameters in characterizing an optically-aberrating environment are based on 

assumptions of spectral characteristics and mechanisms of optical distortion that simply 

do not apply to compressible shear layers or to the wider field of aero-optics, of which 

compressible shear-layer flows are merely a part. 

10.3. Contributions 

The first contribution of this work is to sound a general warning for the adaptive-

optics community.  As alluded to earlier, many researchers and engineers in the field of 

optical correction, when encountering aero-optic flow conditions and attempting to deal 

with the distortions produced by such flows, continue to use the standard parameters 

of 2

nC , the Fried parameter, and the Greenwood frequency.  As was addressed in chapter 

4, a significant body of work and engineering guidelines for optical correction have been 

produced regarding atmospheric distortions, but these rules are not applicable if the 

underlying assumptions that went into their development are not applicable.  Simply 

calling attention to this fact is a worthwhile contribution by itself. 

The filter-function descriptions of corrective systems presented in this dissertation 

are not quite as neat as the guidelines for characterizing and correcting atmospheric 

propagation.  Aero-optic flows tend to have a dominant range of frequencies, but one or 

two numbers will not tell an engineer everything he needs to know about the conditions, 

as the Fried parameter and Greenwood frequency do for atmospheric distortions.  Then 

again, the original description of bandwidth requirements in corrective systems produced 

by Fried and Greenwood
5
 was also messily complicated, and did not produce the 
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commonly-referenced Greenwood frequency until Greenwood applied a number of 

simplifications in a following paper.  Similarly, the filter functions can be applied in 

greater or lesser detail, depending on how much detail is needed. 

At the simplest level, the 3-dB cut-off frequency associated with each type of 

correction provides a guide to engineers regarding the necessary bandwidth in systems of 

this sort.  Given an aperture size and a relative perpendicular velocity of the air to the 

optical path, the cut-off Strouhal number will indicate an upper limit to frequency 

affected by this type of correction.  If the corrective system is unable to operate at this 

frequency, then it will fail to achieve maximum effectiveness.  On the other hand, 

attempting to design and implement a system with a bandwidth significantly beyond this 

cut-off frequency can only add to the cost of the system without reaping any benefits in 

improved performance. 

If more details concerning the effectiveness of the corrective system are desired, 

then the Taylor-series approximations can be applied.  These take the form of relatively 

simple power-law descriptions, which adequately describe the effects of those forms of 

correction for virtually all frequencies below the cutoff frequency, while forms of 

correction other than G-tilt removal have virtually no effect on disturbances of a 

frequency higher than the cut-off.   

Something to keep in mind about these filter functions is that they are meant to be 

applied to power-density spectra of a set of disturbances, but, judging from the 

comparison of this filter to the Boeing-SVS results in chapter 9, they can be applied 

universally to any such spectra.  This is what sets them apart from the guidelines 
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developed for correcting atmospheric propagation, since those rules are based on the 

disturbances having certain spectral and stochastic properties. 

10.4. Recommendations for Future Work 

The final proof of any hypothesis is whether or not it describes the physical 

world.  The significance of a contribution to scientific knowledge and engineering 

applications is proven by whether or not others can make use of it.  In chapter 9, the 

general guidelines and filter functions for tip-tilt correction were applied to data collected 

from a compressible shear layer, and compared to work done by other researchers.  These 

comparisons indicate that the corrective filter functions used are applicable over a wide 

range of disturbance types; however, there is no end to the types of disturbance that may 

be found in the physical world.  Likewise, there are many corrective systems already in 

existence to deal with these effects, and many more yet to be devised.   

A major difference between corrective-system filter functions presented in this 

dissertation to the commonly-used guidelines developed for atmospheric propagation is a 

trade-off between simplicity and breadth of application.  The rules established for 

atmospheric correction can characterize atmosphere-induced distortions with one or two 

numbers and likewise can predict the phase variance likely to remain after correction.  

Using a filter function to predict residual phase variance requires applying the filter to the 

power spectrum of the disturbance and then integrating over all frequencies.  This step 

was used in developing the guidelines for atmospheric correction, but is normally skipped 

over in applying these rules due to implicit assumptions regarding the characteristics of 

the optical distortions.  For the sake of utility, a means of characterizing any optically-
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distorting flow in a few parameters should be sought after.  In pursuing this, it may be 

necessary to limit the description to aero-optic flows of the sort that may be encountered 

around a vehicle in flight, but a set of simplified aero-optic rules would complement the 

existing rules for atmospheric-propagation.  In fields of applied science, it is not 

uncommon to have one set of rules and guidelines for one regime of conditions, and 

another set for different conditions. 

Section 8.5 addressed higher-order correction.  Simulated correction was 

sufficient to establish cut-off frequencies for these forms of correction, but proved to 

have limitations in resolving disturbances of particularly high or low frequencies relative 

to this cut-off value.  Likewise, derivations for analytical expressions of higher-order 

correction are prepared and presented in section 8.5 and section B.7 of appendix B, but 

carrying these derivations through to expressions simple enough for useful application is 

beyond the scope of this dissertation; however, taking this work to the more useful form 

would be a valuable goal for future work. 

 

                                                 

1
 Hugo, R. J., Jumper, E. J., Havener, G. & Stepanek, C. 1997 “Time-resolved wave front measurements 

through a compressible free shear layer. AIAA J. Vol. 35, pp 671–677. 

2
 Fitzgerald, E.J., Jumper, E.J., “The optical distortion mechanism in a nearly incompressible free shear 

layer,” J. Fluid Mech., Vol. 512, pp 153-189. 

3
 Cicchiello, J.M., Jumper, E.J., “Low-order representation of fluid-optic interactions associated with a 

shear layer,” AIAA Paper 2001-0952, January 2001. 

4
 Chouinard, M., Asghar, A., Kirk, J.F., Siegenthaler, J.P., and Jumper, E.J., “An experimental verification 

of the weakly-compressible model,” AIAA paper 02-0352 

5
 Greenwood, D.P., and Freid, D.L., Power Spectra Requirements for Wave-Front-Compensative Systems, 

J. Opt. Soc. Am., Vol. 66, March 1976, pp 193-206. 



 

322 

APPENDIX A:  

THE REDESIGN AND CONSTRUCTION OF A NEW SHEAR LAYER FACILITY 

A.1. Introduction 

The Weakly-Compressible Shear Layer (WCSL) facility described in section 7.2 

was useful in this study, but was also found to have limitations that could hinder further 

efforts.  In particular, a wider test section was desired to accommodate larger beams and 

to investigate possible cross-stream effects in shear layers.  In the process of designing 

and constructing a new facility with a larger cross-section, various modifications made to 

the original facility were refined and incorporated into the new facility, which is shown in 

the wireframe model and photo of Fig. A.1 below. 
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Figure A.1: Wire-frame design and photo of the second-generation WCSL 

facility. 

 

A.2. Test Section 

The primary goal of redesigning the tunnel was increase the width of the test 

section.  The previous facility had a high-speed flow of approximately 0.8 M and a cross-

sectional area of 1.5 inches by 3 inches (0.0029 m
2
).  Drawing from free air in the room, 

this indicates a flow velocity of 260 m/s and a density of 0.85 kg/m
3
.  Indicating a mass 

flow rate of  

 skgsmmmkg /64.0/2600029.0/85.0 23 =⋅⋅ . (A.1) 



 

324 

The low-speed side of the original facility had a flow of about 0.09 M at the same 

static pressure (64 kPa) as the high-speed flow.  This corresponded to a speed of 31 m/s, 

and a density of 0.76 kg/m
3
.  With an area of 0.0085 m

2
, this results in a mass flow rate of 

 skgsmmmkg /20.0/310085.0/76.0 23 =⋅⋅ . (A.2) 

Thus, the facility had a net mass flow rate of 0.84 kg/s.  If the atmosphere being drawn 

from had a density of 1.2 kg/m
3
, then this is a volume flow rate of  

 min/2100/6.35/7.0
/2.1

/84.0 333

3
ftsftsm

mkg

skg
=== . (A.3) 

The three pumps available to power the previous system were rated for 3310 ft
3
/min 

each, so it was judged that it should be possible to maintain the same flow conditions 

produced in the original WCSL with a cross-section three times as wide. 

One of the refinements made over the course of using the previous facility was to 

replace the solid Plexiglas upper and lower walls of the test section with removable 

blocks, so that optically-flat windows could be inserted at points where optical 

measurements were to be taken.  The modified first-generation facility still had a few 

structural members that could not be removed and blocked optical access at some points 

due to metal bolts running through the Plexiglas.  The feature of removable sections was 

worked into this version of the facility without the sometimes-inconvenient cross-

bracing.  A wire-frame diagram and photo of this test section are shown in Fig. A.2.  As 

previously indicated, it has the same dimensions as the test section of the previous 

version, except for the width being increased from 3.8 cm (1.5 inches) to 11.4 cm (4.5 

inches). 
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Figure A.2: Wire-frame design and photo of test section for the second 

WCSL. 

A.3. Diffuser 

The existing diffuser attached to the wall of the laboratory, and to the port leading 

to the Allis Chalmer pumps behind the wall, expanded horizontally but not vertically.  

Thus, modifying this section to meet the new dimensions was simply a matter of cutting 

the diffuser at a point where its internal dimensions had expanded to match the desired 
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11.4 cm width, and wielding a new flange to the end with the necessary holes for 

attaching other portions of the new facility 

 

Figure A.3: Wire-frame design of the diffuser for the second WCSL. 

A.4. Sonic Throat 

As the width of the test section was increased by a factor of three, so too was that 

of the sonic throat.  No other modifications were necessary.  A side-view schematic of 

the new sonic throat is shown in Fig. A.4. 
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Figure A.4: Sonic throat for the second WCSL. 

A.5. Splitter-Plate Section 

As noted above, the high and low-speed inlets of the first version of the WCSL 

facility were joined, having been fashioned out of one inlet with a plate inserted to 

partition it into two inlets.  In the redesigned facility, the inlets for the two streams are 

separate pieces and a short section, shown in Fig. A.5, is placed between the inlets and 

the test section to bring the two flows into contact with a sharp trailing edge.  A portion 

of the piece forming the splitter plate extends somewhat past the edges of this section so 

that it may fit into a socket formed when the high and low-speed nozzles are joined. 
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Figure A.5: Wire-frame design and photo of splitter-plate section for 

uniting the high and low-speed flows. 

This is based on a modification to the earlier version of the facility that not used 

during the experiments in which the data presented in section 7.4.2 was gathered.  

Running parallel to the study and characterization of the shear layer described in this 

dissertation were attempts to implement flow control within the shear layer for the 

purpose of regularizing the structures shown to be present in section 7.3.  From the 

standpoint of a corrective system, regularized disturbances are easier to deal with in that 

the next few cycles of such a disturbance can be predicted in advance.   

A.6. High-Speed Inlet 

The inlets for the original WCSL were produced by modifying a pre-existing inlet 

nozzle that had been used in other experiments.  This was done by soldering a sheet of 
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metal inside nozzle, separating it into upper and lower sections, with the upper section 

forming a contraction drawing air from the room, while the lower section formed an 

expansion and drew air from a settling tank.  As there was no pre-existing inlet nozzle to 

fit the dimensions of the new, wider WCSL.  New inlets were designed from scratch, 

with the high-speed contraction and the low-speed expansion being separate pieces.   

The new high-speed has an intake area of 53.3 cm by 80.0 cm (0.427 m
2
) and 

discharges into the test section over an area of 11.4 cm by 7.6 cm (0.00871 m
2
), 

producing a contraction ratio of 49 to 1 over a length of 91.4 cm.  A honeycomb of 

plastic tubes, often called a strawbox, has been placed in front of the inlet for safety and 

flow-straightening.  A wire-frame diagram and photo of this nozzle are shown in Fig. 

A.6. 
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Figure A.6: Wire-frame design and photo of high-speed inlet nozzle for 

the second WCSL. 

A.7. Low-Speed Inlet 

For the low-speed portion of the shear layer, the original WCSL drew air from a 

settling tank through an expansion.  The air in the settling tank was drawn from the room, 

through a set of valves to reduce the total pressure of this air.  The original ball valve was 

eventually replaced with a set of “quiet valves”, using sets of tubes to achieve the same 

total pressure loss with less noise.  In the redesign of the facility, it was decided to do 

away with the settling tank entirely, replacing it with a series of quiet valves. 
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Thus, the new low-speed inlet is comprised of two sections, an expansion section, 

and a pressure drop section.  The expansion section begins with an internal area of 6.86 

cm by 13.4 cm (0.00917 m
2
) and ends with an area of 11.4 cm by 22.3 cm (0.0254 m

2
) 

for an expansion ratio of 2.78 to 1 over a length of 0.76 m.  The low-speed inlet is bent to 

fit under the high-speed inlet, as can be seen in the pictures of the facility in Fig. A.1.  

Therefore, the flow is also made to turn by 28 degrees as it passes through this segment.  

A set of guide vanes inside this section, not shown in the diagrams of Fig. A.7 are used to 

assist this redirection of the flow and prevent separation.   

 

Figure A.7: Wire-frame design of low-speed inlet expansion for the 

second WCSL. 

The pressure-drop section is a straight rectangular tube, with a length of 0.813 m 

(2ft. 8 in) and an internal cross-sectional area of 8.9 cm by 15.2 cm (3.5 in. by 6 in).  The 

desired drop in total pressure is produced by passing the air through a series of 

strawboxes one of which is shown in Fig. A.8.  This material, forming a honeycomb of 

plastic tubes, is commonly used in the inlets of wind tunnels to straighten the incoming 

flow.  A larger section of the same material can be seen in front of the high-speed inlet in 
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Fig. A.6.  The portion shown in Fig. A.8 is 10.1 cm (4 in.) thick, and has been cut to the 

dimensions of the pressure-drop section interior so that it may be placed inside that 

section shown in Fig. A.9.  These dimensions, are a little bigger than the intake area of 

the expansion section so that the straw-boxes will not be drawn into the facility.   

 

Figure A.8: “Straw-box” and spacer used for inducing total pressure loss. 
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Figure A.9: Wire-frame design and photo of low-speed section (below the 

high-speed inlet) for inducing a drop in total pressure. 

Also shown in Fig. A.8 is a 0.5-cm thick rectangular plastic frame with outer 

dimensions also sized to fit into the pressure-drop section, and inner dimensions that 

match the intake area of the expansion section.  As with the quiet-valve added to the 

original facility and described in section 7.2.2, the desired reduction in total pressure is 

produced by friction as the air passes through the tubes of the straw-boxes and inlet and 

outlet effects as the air enters and leaves each box.  The spacers are inserted between the 

straw-boxes to provide space between the exits of the tubes making up one straw-box and 

the inlets of the next, so that the effects associated with inlets and outlets can fully 

manifest.   

The low-speed portion of the flow in the wider test section was calculated to have 

a mass-flow rate of about 0.66 kg/s at the desired flow conditions.  The air in the room 

has a density of about 1.16 kg/m
3
.  Air of that density moving through the area open to 
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flow in this section requires a velocity of about 54 m/s to match the mass-flow rate for 

the corresponding portion of the test section.  This velocity is well below the transonic 

region for ambient, room-temperature air, and so compressibility effects may be 

neglected for this rough estimate.  As was addressed in section 7.2.2, friction losses are 

found via the Darcy-Weisbach equation,
1
 

  
2

2
V

D

L
fp ρ=∆ , (10.4) 

in which D and L are the inner diameter and length of tube respectively.  In this equation, 

f represents a friction factor, which may be found by from Moody diagrams or iteratively 

from the Colebrook-White equation,
2
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in which ε is the roughness of the interior pipe surface and the Reynolds number is based 

on the diameter of the tube.  The tubes making up the strawboxes have a diameter of 

about 3 mm and roughness for the plastic material of these tubes is estimated to be 5x10
-8

 

m.  Based on this and the two equations above, the drop in total pressure due to friction as 

the air passes through the tubes is expected to be about 1800 Pa. 

The loss of total pressure associated with the inlet and outlet of a duct is found by  

   
2

2
V

Kp ρ=∆ . (A.6) 

The constant K is determined by the characteristics of the inlet or outlet.  For any 

type of outlet, K = 1 and the expected total pressure loss is 1700 Pa.  The spacers between 

strawboxes shown in Fig. A.8 are inserted to allow this exit effect to manifest.  For inlets, 

K is primarily determined by how sharp of a turn air must make when entering the duct.  
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An inlet with sharp corners has an associated value of K = 0.5.  For rounded inlets, K 

asymptotically approaches 0 as the radius curvature for the rounded edges increases 

relative to the radius of the duct.  The inlets to the tubes making up a strawbox are not 

rounded.  However, each tube is surrounded by other tubes, also drawing air.  Therefore, 

air entering a given tube does not have to turn significantly to do so, as the air to the sides 

of the inlet enters the tubes to the sides of that tube.  Because of this, the effects of the 

inlet on total pressure are likely to be negligible compared to the effects of the outlet and 

wall friction in this case. 

This estimate suggests that one strawbox of the indicated dimensions should 

induce a drop in total pressure of about 3.5 kPa.  To meet the desired conditions for flow 

in the test section, a drop of about 33 kPa is needed.  This suggests that nine or ten such 

boxes in series should produce a total pressure drop close to this desired value.  However, 

this does not take into account the fact that the pressure drop produced by the first box in 

the series will change the properties of the air entering the second box, which will change 

the properties for the third box, and so on.  A more detailed analysis taking this into 

account indicated that a series of eight boxes would produce a drop in total pressure of 

33.9 kPa.  

The section shown in Fig. A.9 was constructed to hold eight strawboxes with 

associated spacers between each box.  It was also constructed so that boxes could be 

removed if the actual pressure drop proved to be too high, and another section could be 

added onto the end with more pressure-loss inducing devices if the actual pressure drop 

proved to be too low.  In fact, the drop in total pressure produced by eight strawboxes has 

proven to be perfectly suited to the needs of this facility.   
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APPENDIX B:  

EXPANDED DERIVATIONS OF APERTURE FILTER FUNCTIONS 

B.1. Introduction 

In chapter 8 the effects of several types of correction were expressed in terms of 

gain functions in the form of the time-averaged mean-square OPD after correction 

divided by the time-averaged mean-square OPD of the uncorrected case. 
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The Strouhal number based on the aperture size and convective velocity 

perpendicular to the optical path also corresponds to the ratio of the aperture diameter to 

the period of the sinusoidal wavefront used in these derivations. 
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In many of these derivations, there are intermediate stages in which the equations 

contain a large number of terms that are eventually condensed into a smaller number of 

terms in the final result.  These intermediate stages are not necessary for understanding of 

the results and so were skipped in most of the derivations in chapter 8.  They are 

presented in this appendix for completeness. 
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B.2. Uncorrected Cases 

All the derivations of chapter 8 used a sinusoidal waveform to represent the 

wavefront to be corrected, of the form 
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This was to be corrected, either over a one-dimensional aperture of length Ap, or a 

circular aperture of diameter Ap.   

B.2.1. One-Dimensional Aperture 

Over a one-dimensional aperture the OPDrms at any moment in time is 
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In expressing these functions as a form of filter gain, it is more physically meaningful to 

work with mean-squared OPD rather than root-mean-squared OPD. 
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Using the expression for OPD in Eq. B.10, (OPDrms)
2
 is found to be 
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A full cycle of the disturbance in Eq. B.10 occurs over the interval from t = 0 to t = Λ/UC.  

Averaging over this period in time will produce the same result that would be approached 

asymptotically by averaging over increasingly longer periods of time: 
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B.2.2. Two-Dimensional Aperture 

A square or rectangular aperture is virtually identical to a one-dimensional 

aperture, provided the disturbances are aligned along one of the two axes for the aperture.  

However, the same can not be said for a circular aperture.  The edge of a circular aperture 

with a diameter of Ap and centered at (x,y) = (0,0) is defined by  

 2
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4
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p
−±= . (B.15) 

Therefore, integrating over the aperture may be represented by integrating in y to the 

limits of Eq. B.15 and then over the range from –Ap/2 to Ap/2 in x.  Over such an aperture 

the OPDrms at any moment in time is 
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As with the one-dimensional apertures, it is more physically meaningful to work with 

mean-squared OPD rather than root-mean-squared OPD. 
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The expression for OPD in Eq. B.10 can be used to represent a two-dimensional 

wavefront that only has variations in the x direction.  Using this equation, (OPDrms)
2
 is 

found to be based in part on Bessel functions of the first kind, represented in Eq. B.18 

and following equations in this appendix by Jn for an nth order Bessel function.   
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As in the one-dimensional case, a full cycle of the disturbance in Eq. B.10 occurs 

over the interval from t = 0 to t = Λ/UC and averaging over this period in time will 

produce the same result that would be approached asymptotically by averaging over 

increasingly longer periods of time.  Interestingly, it also leads to the same end result 

found for the one-dimensional case. 

 ( ) ( ) 2

/

0

22

2

1
),()( KdttAOPD

U
AOPD

CU

prms

C

prms =
Λ

= ∫
Λ

. (B.19) 

B.3. Piston Correction 

The simplest form of correction may be that of adjusting the average phase or 

OPD of the wavefront in the aperture to zero.  This average phase or displacement is 

called piston.  There are also some applications, such as those where effects in the far 

field are of primary interest, for which the piston over an aperture is irrelevant, and only 

T/T or higher-order effects have impact.  In such cases, simply having a finite aperture or 

beam diameter has a filtering effect equivalent to that of piston correction.  
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B.3.1. One-Dimensional Aperture 

The piston-corrected wavefront is of the form 

 )(),(),( tAtxOPDtxOPDcor −= . (B.20) 

The coefficient A(t) is selected to remove the mean piston in the uncorrected wavefront at 

each point in time, so that 
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Using the sinusoidal wavefront of Eq. B.10 
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Using Eqs. B.9 and B.14,   
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Plotting Eq. B.25 in decibels against a logarithmic scale (see Fig. 8.22 on page 

258) indicates that this function may be approximated by a 2
nd

-order power function for 

small values of StAp.  Using a Taylor-series approximation for a cosine: 
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In the approximation above, )( X

ApStO , indicates a term on the order of StAp to the X power. 

B.3.2. Two-Dimensional Aperture 

Over a two-dimensional circular aperture, let the piston-corrected wavefront 

remain of the form in Eq. B.20, but mean piston and the coefficient A(t) will be defined 

over the aperture in both directions.  Mean piston and the coefficient A(t) are defined by 
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Using the sinusoidal wavefront of Eq. B.10 
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Using Eqs. B.9 and B.19,   
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Plotting Eq. B.31 in decibels against a logarithmic scale (see Fig. 8.22 on page 

258) indicates that this function may be approximated by a 2
nd

-order power function for 

small values of StAp.  Using a Taylor-series approximation for a first-order Bessel 

function of the first kind, Eq. B.31 may be approximated as: 
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B.4. Z-Tilt Correction 

The term “Z-tilt” is short for “Zernike-tilt” and is based on expressing the 

wavefront as a summation of Zernike polynomials.  The Z0 polynomial or mode is a 

constant value that corresponds to piston.  The 1

1Z and 1

1

−Z modes are planes tilted in the x 

and y directions respectively. 

B.4.1. One-Dimensional Aperture 

For a one-dimensional aperture aligned in the x-direction, the tilt-corrected 

wavefront is of the form 

 )()(),(),( txBtAtxOPDtxOPDcor −−= . (B.33) 

The coefficients A(t) and B(t) are fit to the wavefront so as to minimize the 

expression  
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These values can be found by taking the derivative of the equation above with respect to 

each coefficient, and setting those derivatives to zero. 
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In solving this set of two equations and two unknowns, the result for coefficient A(t), 

which represents piston, has the same expression and value as was found for piston-only 

correction in Eq. B.21.  The tilt-coefficient, B(t), is 
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Using the sinusoidal wavefront of Eq. B.10 
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Using Eqs. B.9 and B.14,   
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Plotting Eq. B.41 in decibels against a logarithmic scale (see Fig. 8.12 on page 

246) indicates that this function may be approximated by a 4
th

-order power function for 

small values of StAp.  Using Taylor-series approximations for trigonometric functions, Eq. 

B.41 can be approximated as 
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B.4.2. Two-Dimensional Aperture 

Over a two-dimensional aperture, with the possibility of tilt in both the x and y 

directions, the tilt-corrected wavefront is of the form 

 )()()(),(),( tyCtxBtAtxOPDtxOPDcor −−−= . (B.43) 

For Z-tilt correction the coefficients A(t), B(t), and C(t) are chosen as to minimize the 

equation  
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These values can be found by taking the derivative of the equation above with respect to 

each coefficient, and setting those derivatives to zero. 
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In solving this set of three equations and three unknowns, the result for coefficient A(t), 

which represents piston, has the same expression and value as was found for piston-only 

correction in Eq. B.27.  The tilt-coefficients, B(t) and C(t), are 
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Using the sinusoidal wavefront of Eq. B.10, there is no tilt or other form of variation in 

the y direction, so C(t) = 0.  Net T/T in the x direction is such that   
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Using Eqs. B.9 and B.19,   
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Plotting Eq. B.53 in decibels against a logarithmic scale (see Fig. 8.14 on page 

249) indicates that this function may be approximated by a 4
th

-order power function for 

small values of StAp.  Using Taylor-series approximations for Bessel functions of the first 

kind, Eq. B.53 can be approximated as: 
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B.5. G-Tilt Correction 
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The term “G-tilt” is short for “gradient-tilt” and is based an average of the local 

gradient at each point on the wavefront.   

B.5.1. One-Dimensional Aperture 

As with Z-tilt, G-tilt correction for a one-dimensional aperture aligned in the x-

direction, the tilt-corrected wavefront is of the form 

 )()(),(),( txBtAtxOPDtxOPDcor −−= . (B.55) 

However, G-tilt correction is based on the average of the local slopes over the wavefront, 

so the coefficient B(t) is defined as   
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Piston, which corresponds to the coefficient A(t), is often not part of G-tilt 

correction, in part because G-tilt is often detected and defined by its effects in the far 

field, in which mean piston has no effect.  Technically, piston is also a separate quantity 

from Z-tilt, but was included in the derivations of sections B.4.1 and B.4.2 because it 

normal to define and deal with the Z0 Zernike polynomial before dealing with 

the 1

1Z and 1

1

−Z  polynomials.  In the interest of producing a meaningful comparison 

between G-tilt and Z-tilt correction, A(t) will be defined as to remove mean piston, as was 

done in sections B.3.1 and B.4.1. 

Using the sinusoidal wavefront of Eq. B.10,  
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Using Eqs. B.9 and B.14,   
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Plotting Eq. B.60 in decibels against a logarithmic scale (see Fig. 8.18) indicates 

that this function may be approximated by a 4
th

-order power function for small values of 

StAp.  Using Taylor-series approximations for trigonometric functions, Eq. B.60 can be 

approximated as: 
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B.5.2. Two-Dimensional Aperture 

Over a two-dimensional aperture, with the possibility of tilt in both the x and y 

directions, the tilt-corrected wavefront is of the form 

 )()()(),(),( tyCtxBtAtxOPDtxOPDcor −−−= . (B.62) 

As with one-dimensional G-tilt correction, the coefficient A(t) for piston is not inherently 

defined as part of this type of correction, but will be set to the values for removing mean 

piston that were found in sections B.3.2 and B.4.2.  Coefficients B(t) and C(t) are defined 

as the mean gradient in the x and y directions respectively, averaged over the aperture. 
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Using the sinusoidal wavefront of Eq. B.10, there is no tilt or other form of variation in 

the y direction, so C(t) = 0.  Net G-tilt in the x direction is such that   
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Using Eqs. B.9 and B.19,   
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Plotting Eq. B.68 in decibels against a logarithmic scale (see Fig. 8.20) indicates 

that this function may be approximated by a 4
th

-order power function for small values of 

StAp.  Using Taylor-series approximations for Bessel functions of the first kind, Eq. B.68 

can be approximated as: 
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B.6. Temporal Effects 

Not only does the type of correction used determine the effectiveness of the 

corrective system to various wavefront disturbances, but the timing of that correction can 

also be very important.   
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B.6.1. Periodic Correction 

Digital systems are generally discrete in time, meaning inputs and outputs are 

updated at discrete moments in time, separated by some non-zero interval.  Over the 

period between these updates, the inputs and outputs are generally held constant at the 

value of the last update.  In applying correction, this may mean that the correction applied 

at one moment in time is then held constant for the period between updates, even as the 

optical disturbances and the flow causing those disturbances move and change. 

To explore this phenomenon, let the wavefront be of the form 
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Let a perfect correction be applied at some time t0 such that φ(t0) = φ0, and then let the 

correction be held constant over an interval following that time, so that the corrected 

wavefront over that interval is  
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The mean-squared OPD in that period, over a one-dimensional aperture, would then be 
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If this interval lasts for a period of time from t0 to t1 such that φ(t0) = φ0 and φ(t1) = φ0 + 

∆φ, with dφ(t)/dt being a constant value over this interval as would be the case for frozen-

flow aberrating structures being carried by with a constant convective velocity, then the 

average mean-squared OPD over this interval will be 
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Another necessary step is to take the average over all possible starting values of 

φ0 for this interval: 
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It is interesting to note that dependence on Ap simply drops out while performing the last 

averaging integral.  The velocity UC and length scale Λ are still factors in that ∆φ 

corresponds to the time interval between corrections (τ1 = t1 – t0) such that  
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Using the established OPDrms for an uncorrected, one-dimensional aperture in Eq. B.14, 

 
( )

( ) ϕ

ϕϕ

ϕ

ϕ
ϕ

∆

∆−∆
=

∆

∆
=∆

))sin((
2

)(

)(
)(

2

2

rms

rmscor

OPD

OPD
G . (B.76) 

B.6.2. Latency 

In any physical or electronic system there will be delays in calculating and 

implementing the correction.  This is known as latency.  To explore this phenomenon, let 

the sinusoidal wavefront of Eq. B.70 be used again, this time with the correction being 

applied at each moment, with no update period, but with some time delay, τ2, 

corresponding to a phase delay of ∆θ.  The corrected wavefront would then be of the 

form 
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The mean-squared OPD at each moment in time over a one-dimensional aperture, would 

then be 
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Averaging this over time by averaging over possible values of φ(t) produces the result: 
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Again, dependence on Ap simply drops out while performing the last averaging integral.  

The velocity UC and length scale Λ are still factors in that ∆θ corresponds to the time-

delay interval τ2 such that  
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Using the established OPDrms for an uncorrected, one-dimensional aperture in Eq. B.14, 
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B.6.3. Periodic Correction with Latency 

Not all systems have periodic correction, but any system built in the real world 

has some degree of latency, though the degree of latency may not be significant for the 

application for which the system is intended.  It may be beneficial, then, to take a look at 

the combined effects of periodic correction and latency.  Using the sinusoidal wavefront 

of Eq. B.70, if the correction to be applied is for a time at which φ(t) = φ0, but with some 

delay corresponding to a phase delay of ∆θ, then the corrected wavefront will be of the 

form:  
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The mean-squared OPD at each moment in time over a one-dimensional aperture, would 

then be 
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Averaging over the period between updates of this correction,  
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Averaging over all possible starting points for the cycle, which are represented by values 

of φ0, simplifies this considerably: 
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Again, dependence on Ap simply drops out while performing the last averaging integral.  

Using the established OPDrms for an uncorrected, one-dimensional aperture in Eq. B.14, 
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B.6.4. Temporal Effects for Two-Dimensional Apertures 

As noted in the preceding sections, all dependency on the aperture size drops out 

of these expressions for temporal effects during the later averaging stages of the 

derivations.  This may apply to aperture shape as well, because the end results for 

performing these derivations for two-dimensional circular apertures are the same as for 

the one-dimensional apertures.  These derivations are presented here for completeness.   

Using the periodically corrected wavefront of Eq. B.71, 
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As noted, this is the same result found for a one-dimensional aperture in section B.6.1. 

Using the wavefront that is corrected with latency in Eq. B.77, 
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As noted, this is the same result found for a one-dimensional aperture in section B.6.2. 

Using the wavefront that is periodically corrected with latency in Eq. B.82, 
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As noted, this is the same result found for a one-dimensional aperture in section B.6.3. 

B.7. Higher-Order Correction 

For this analysis, it will be assumed that the corrective fit to the wavefront will be 

produced by a sum of basis functions, with each function scaled by some time-varying 

value to produce the best fit to the wavefront at that time.  If the jth basis function is 

represented by Rj(x,y) and the associated scaling value by Sj(t), then   
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The residual disturbances in the wavefront after correction with this fit will be described 

by 
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where A is the area of the aperture. 
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B.7.1. The General Case  

An optimal fit is one with values of Sj(t) to minimize Eq. B.100 for each value of 

t.  As was done with the T/T correction, the optimal values of these coefficients will 

correspond to values for which the derivative of Eq. B.100 with respect to that coefficient 

is zero.  
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This leads to the equation 
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Using the following notation: 
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Eq. B.100 can be rewritten as 
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and Eq. B.102 can be written as 
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The set of equations represented by Eq. B.107 can also be written in vector-and-

matrix form with: 
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Technically the matrix C
r

in Eq. B.108 should be
T

C
r

, but by Eq. B.105, Cjk = Ckj which 

indicatesC
r

is a symmetric matrix, for which CC
T
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= .  Likewise, Eq. B.100 can be written 

as  
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The solution to Eq. B.108 is quite clearly  
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Substituting this into Eq. B.108, the minimum achievable wavefront distortion after 

correction is 
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This analysis was originally performed by Richard Hudgin
1
 in the 1970’s.  He 

used ensemble averages to arrive at a general guideline for the necessary actuator spacing 

to achieve a given level of performance when dealing with atmospheric distortions.  In 
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dealing with aero-optic disturbances, time averages will serve the same function as 

ensemble averages 
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In using the sinusoidal wavefront of  
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yet again, this corresponds to integrating a function over the rage φ = -π to φ = π and then 

dividing by 2π.  From this,  
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and the corrective gain is 
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B.7.2. Local Piston Correction  

If the overall aperture is divided into a rectangular grid of sub-apertures, each of 

some size subAp, then the basis functions may be defined as 
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The parameters Xj and Yj represent the center of this basis function and presumably 

correspond to the location of an actuator driving the local piston correction in a physical 

system of this sort.  Considering only a one-dimensional aperture and correction: 
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and the center location (Xj) of each sub-aperture will then be 
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From Eq. B.104,  
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From Eq. B.105, 
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for j = k, while Cjk = 0 for j ≠ k, which can also be written as  
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represents the identity matrix and 
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where I
r

represents the identity matrix.  Because of this, only cases where j = k will 

contribute to the summation in Eq. B.111, and so 
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The average of the summation in Eq. B.123 can also be expressed as the sum of the 

averages  
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It is noteworthy that the index, j, drops out of the equation during the integral, 

making the summation trivially easy.  If an aperture of size Ap is divided evenly into sub-

apertures of size subAp, then the number of sub-apertures will be 
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Just as the ratio Ap/Λ can be rewritten as a Strouhal number based on the length scale Ap,  
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From Eq. B.115, the corrective gain in terms of StsubAp is then 
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B.7.3. First-Order Correction  

A common form of B-spline basis functions are those produced by the Cox-de 

Boor recursion formula.  In this formula the 0
th

-degree basis function is defined over the 

intervals between points defined by x = ui, where u0 ≤ u1 ≤ u2 ≤ u3 ≤ … ≤ uN.  
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This is clearly equivalent to the piston-correction basis function used in section B.7.2, 

except that function was defined around central points (Xj = (ui – ui+1)/2) separated by 

uniform intervals of length subAp.   

In the Cox-de Boor formula, a basis function of order p > 0 is found from the 

order p-1 basis function by 
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The 1
st
-order basis function is then defined by 
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The nature of this recursion is such that a basis function of order p extends across 

p+1 intervals.  In terms of center points (Xj) and uniform sub-apertures, this would be. 
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with center points at  
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Using this 1
st
-order basis function,  
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The matrix elements Cjk are equal to zero except when k = j, k = j+1, or k = j-1.  In 

those cases: 
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This type of matrix is called a tridiagonal matrix.  Methods for inverting a tridiagonal 

matrix often involve somewhat complicated algorithms and most are intended to produce 

numerical results for a specific matrix, rather than a more general solution.  However, 

inverting this particular matrix is made simpler by the facts that this matrix is 

symmetrical, and is a Toeplitz matrix, defined by having each diagonal defined by one 

value for all elements in that diagonal.  It should be noted that for some physical 

implementations of a corrective system, effects along the edges of the aperture may result 

in a matrix that is not truly Toeplitz, having different values at or near the C11 and CNN 

elements of the matrix.  In this analysis, which is pursuing a generalized rule of thumb for 

the design and predicted effectiveness of such systems, a Toeplitz matrix will be 

assumed.  For a symmetric, tridiagonal, Toeplitz matrix, the following analytical 

expression for the inverse matrix can be used.
2
  

First, the N-by-N matrix C
r

is rewritten in the form  
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Secondly, a parameter, β, is defined, such that 
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This indicates that 

 βββ −+== eecosh24 , (B.140) 
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The N-by-N inverse matrix is then described by  

( )
])1sinh[(]sinh[2

])1cosh[(])1cosh[(
)1(61

ββ

ββ

+

−−+−−−+
−= +−

N

kjNjkN

A

A
C

kj

psub

p

jk

r
. (B.144) 

Either value of β will work with this method, but the positive value, ln(2+ 3 ), will be 

used.  The element for summation in Eq. B.111 can be written in terms of sines, cosines, 

and exponential functions as 
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Taking the time-average of this element by integrating over φ is possible, but unlike what 

was seen in the piston-correction case of section B.7.2, the result of this integral is not a 

simpler expression: 
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Combining Eqs. B.111, B.115, B.133, and B.146 should produce an estimate of 

this type of correction for all values of N.  However, performing the necessary 

summations and rendering the result into a simplified form for ease of use is left for the 

future. 
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B.7.4. Third-Order Correction  

The 3
rd

-order basis function produced with the Cox-de Boor recursion formula is 
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Using this 3
rd

-order basis function,  
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The matrix elements Cjk are equal to zero except when k = j, k = j+1, k = j+2, k = j+3, k = 

j-1, k = j-2, or k = j-3.  In those cases: 
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As with the 1
st
-order case of the previous section, this produces a symmetric, 

Toeplitz matrix, and analytical solutions for the inverse of such matrices exist.
3
  

First, the matrix C
r

is rewritten in the form  
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Secondly, a parameter, β, is defined, by the roots of an equation constructed from the 

elements of this matrix, such that 
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The roots of Eq. B.154 are: 
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A set of functions of an integer χ are then defined: 
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 ( )116 −−= χuu , (B.159) 

 ( ) ( )11120 615 −+−−= χχ uuu , (B.160) 
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 ( ) ( )111191 514 −+−−= χχ uuu , (B.161) 

 ( ) ( )112416 413 −+−−= χχ uuu , (B.162) 

 ( ) ( )111191 312 −+−−= χχ uuu , (B.163) 

where F’ is the derivative of Eq. B.154 with respect to β 
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A matrix )(χM
r

is then defined by 
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The inverse of the matrix C
r

can then be defined as 
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where []1,3 indicates the 3
rd

 element of the 1
st
 row of the matrix inside the brackets. 

As in the previous sections, it should be possible to combine this inverse matrix 

with Eqs. B.111, B.115, and B.148 to find the effective frequency-dependent gain of this 

form of correction.  However, finding an analytic form or approximation simple enough 

for convenient use will be left for future work in this field.

                                                 

1
 Hudgin, R., “Wavefront compensation error due to finite corrector-element size,” J. Opt. Soc. Am., Vol. 

67, No. 3, March 1977. 

2
 Hu, G.Y., O’Connell, R.F., “Analytical inversion of symmetric tridiagonal matrices,” J. Phys. A 29 

(1996), pp 1511-1513. 

3
 Lavis, D.A., Southern, B.W., “The Inverse of a Symmetric Banded Toeplitz Matrix,” Reports on Math. 

Phys. Vol. 39, pp 137-146, 1997 

 


